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• The study mapped cell types within and 
surrounding fibrotic lung regions.

• Silica decreased the number of Inmt fi-
broblasts but increased that of pro- 
fibrotic Grem1 fibroblasts.

• Silica induced monocyte-derived alve-
olar macrophages AM3.

• AM3 promoted Inmt fibroblast differ-
entiation into Grem1 fibroblasts in 
fibrotic environment.
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A B S T R A C T

Silicosis represents a form of interstitial lung disease induced by the inhalation of silica particles in production 
environments. A key pathological characteristic of silica-induced pulmonary fibrosis is its localized tissue het-
erogeneity, which presents significant challenges in analyzing transcriptomic data due to the loss of important 
spatial context. To address this, we integrate spatial gene expression data with single-cell analyses and achieve a 
detailed mapping of cell types within and surrounding fibrotic regions, revealing significant shifts in cell pop-
ulations in normal and diseased states. Additionally, we explore cell interactions within fibrotic zones using 
ligand-receptor mapping, deepening our understanding of cellular dynamics in these areas. We identify a subset 
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of fibroblasts, termed Inmt fibroblasts, that play a suppressive role in the fibrotic microenvironment. Validating 
our findings through a comprehensive suite of bioinformatics, histological, and cell culture studies highlights the 
role of monocyte-derived macrophages in shifting Inmt fibroblast populations into profibrotic Grem1 fibroblast, 
potentially disrupting lung homeostasis in response to external challenges. Hence, the spatially detailed 
deconvolution offered by our research markedly advances the comprehension of cell dynamics and environ-
mental interactions pivotal in the development of pulmonary fibrosis.

1. Introduction

Silica particles, among the most abundant minerals in nature, are 
extensively used in agricultural and industrial settings. Their primary 
entry into the human body occurs through the respiratory tract due to 
current production methods, posing significant health risks, including 
silicosis. In 2017, global silicosis cases reached approximately 162,400, 
with over 23,600 new cases reported [1]. The mortality rate for silicosis 
remains high, and current pharmaceutical interventions offer limited 
relief, failing to halt the progression of silica-induced fibrosis. This 
condition, resulting from prolonged inhalation of free silica particles, is 
characterized by extensive fibrosis and systemic inflammation in lung 
tissues. Although the precise mechanisms of silicosis development 
remain elusive, fibroblasts and macrophages are recognized as key 
players in pulmonary fibrosis [2].

The pathogenesis of lung fibrosis has traditionally focused on fibro-
blasts and macrophages, hypothesizing a dysregulated interplay among 
cellular populations. Yet, the full spectrum of interactions within the 
fibrotic niche—a specialized microenvironment driving fibro-
sis—remains underexplored. Extensive literature indicates significant 
heterogeneity among both fibroblasts and macrophages, with different 
subtypes potentially playing distinct roles [3]. Under physiological 
conditions, fibroblast subtypes include lipofibroblasts, airway fibro-
blasts, alveolar fibroblasts, adventitial fibroblasts, and myofibroblasts 
[4]. In disease states, novel subtypes such as fibrosis-associated, 
inflammation-associated, and cancer-associated fibroblasts emerge [3]. 
Similarly, macrophages include interstitial and tissue-resident macro-
phages under normal conditions, while other subtypes appear under 
external stress [5]. The spatial distribution and interactions of these 
heterogeneous subpopulations in pulmonary fibrosis remain unclear. 
Elucidating their distribution and interactions is crucial for under-
standing the pathogenesis of silicosis.

Fibroblasts and macrophages are found in close association in several 
tissues in the steady state, as demonstrated by Germain et al. using in 
vivo imaging [6]. This association enables reciprocal growth factor 
signaling between fibroblasts and macrophages. Medzhitov et al. pro-
posed a symbiotic relationship between these cells, suggesting a two-cell 
circuit where they reciprocally interact and sustain themselves in tissues 
[7]. This framework suggests that macrophages provide PDGF ligands 
required for fibroblast survival. The mechanisms by which macrophages 
influence fibroblast biology have been more extensively addressed in 
fibrosis than in steady-state tissues. Depletion of macrophages at fibrosis 
onset limits injury extent, while their loss during fibrotic resolution 
prolongs fibrosis [8]. Although numerous studies have reported on 
fibroblast-macrophage interactions in pulmonary fibrosis, the mecha-
nisms of interaction between different subtypes remain poorly under-
stood. Fibroblasts, typically quiescent, become activated in response to 
pathological stimuli, embarking on proliferation, migration, and extra-
cellular matrix synthesis, contributing to the heterogeneity among lung 
fibroblasts and underscoring their pivotal role in the fibrotic process [9]. 
Similarly, the lung harbors diverse macrophage subsets [10–13], whose 
roles in fibrosis, particularly in response to silica exposure and in con-
ditions like IPF and severe COVID-19, are increasingly recognized yet 
not fully understood [14–16]. Understanding the interactions and re-
lationships between cellular subpopulations can provide new insights 
into lung fibrosis treatment.

In silicosis, an excessive buildup of silica particles tends to localize in 

specific lung regions. Identifying specific lesions is pivotal in under-
standing the fibrotic process, emphasizing the need to delve into cellular 
components, signaling pathways, and gene expression profiles at these 
distinct locations. Previous studies acknowledging spatial heterogeneity 
often used digital spatial profiling (DSP), which limits the observation of 
comprehensive gene expression changes and introduces subjective bia-
ses in region selection [17]. In contrast, our approach utilized 10x 
spatial transcriptomics technology [18], preserving the morphological 
structure of lung sections. This methodology not only allows for a 
thorough examination of gene expression across the entire tissue section 
but also mitigates the subjectivity associated with artificial region se-
lection, providing a holistic perspective for measuring and comparing 
gene expression changes. Simultaneously, we integrated single-cell 
sequencing data from the same set of spatial transcriptomics samples, 
offering finer resolution in dissecting cellular compositions and facili-
tating a comprehensive understanding of spatial interactions among cell 
types. By employing these advanced technologies, we aim to elucidate 
the nuanced relationships between different cell types within the spatial 
context of lung fibrosis, potentially augmenting our understanding of 
fibrotic pathogenesis and revealing novel therapeutic avenues.

This study utilized advanced technologies, including 10x spatial 
transcriptomics and single-cell sequencing, to elucidate the spatial dis-
tribution and roles of these cells in silicosis. We identified the fibrosis- 
suppressing Inmt fibroblast subtype and the fibrosis-promoting mono-
cyte-derived alveolar macrophage AM3, highlighting their respective 
contributions to disease progression. Notably, our findings revealed a 
decrease in Inmt fibroblasts and an increase in Grem1 fibroblasts in both 
silica-induced and bleomycin-induced fibrosis, suggesting a conserved 
mechanism across different fibrotic conditions. Additionally, spatial 
transcriptomics showed a mutually exclusive distribution pattern be-
tween Inmt and Grem1 fibroblasts, as well as between AM3 and AM1 
macrophages, emphasizing the spatial heterogeneity and aberrant cell 
interactions within fibrotic lungs. These findings elucidate the pivotal 
role of monocyte-derived macrophages and the reduction of Inmt fi-
broblasts in compromising lung homeostasis in response to environ-
mental challenges. By employing these advanced technologies, we aim 
to provide a holistic perspective on the cellular dynamics and in-
teractions in lung fibrosis, potentially uncovering novel therapeutic 
avenues for this debilitating disease.

2. Materials and methods

2.1. Reagents

BSA was purchased from BBI Life Sciences Co (SongJiang District, 
Shanghai, China). Silica particles (SiO2), measuring 2–5 µm in diameter, 
were sourced from Sigma-Aldrich (Product Code S5631, Darmstadt, 
Germany). The sterilization process for silica involved heating at 200 ◦C 
for 16 h and subsequent dilution in sterile Normal Saline (NS) to con-
centrations of 5 mg/ml for lab assays or 50 mg/ml for animal studies. M- 
CSF mouse antibodies (catalogue sc-365779) were procured from Santa 
Cruz Biotechnology (Dallas, Texas, USA), and F4/80 antibodies (cata-
logue ab100790, sc-26642, and sc-52664) from both Santa Cruz and 
Abcam (Cambridge, MA, USA). Rabbit anti-CSF1R antibodies (catalogue 
YT0881) were obtained from Immunoway (Plano, TX, USA).
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2.2. Establishment of a mouse model of silicosis

Male C57BL/6 mice were provided by Hangzhou Ziyuan Experi-
mental Animal Co., Ltd. (Hangzhou, China), housed in groups of three to 
five per cage with a 12-hour light/dark cycle, at a constant temperature 
of 22 ± 2 ◦C and 40 ± 10 % humidity, with free access to food and 
water.

Sigma-Aldrich provided 80 % of the silica particles, with an average 
diameter of 5 µm (Product Code S5631). Endotoxins were rendered 
inactive by 16 h of heating at 180◦. The final product was then sorted 
using Stokes’ rule. Before the silica samples were utilized in the exper-
iment, they were dissolved in 50 mg/ml of saline solution. Six-week-old 
male C57BL/6 J mice weighing around 22 g were put to sleep intra-
peritoneally with 1 % pentobarbital sodium (50 mg/kg in ddH2O). After 
the fur was removed and the neck region was cleaned with 75 % alcohol, 
a 1-cm incision was made to expose the trachea, and 100 μl of either 
silica or NS (for the control groups) was injected. Following the pro-
cedure, the incision was sutured, and the mice were allowed to recu-
perate while being attentively observed once a day and fasted for six 
hours before and after the treatment.

2.3. Sirius red and immunofluorescence staining

Lung specimens were fixed in 4 % paraformaldehyde at 4 ◦C for 24 h, 
then dehydrated using a sucrose gradient (20 % followed by 30 %) each 
for a day. After dehydration, specimens were stored at − 80 ◦C until 
further analysis. Lung sections, 8 µm in thickness, were stained with 
Sirius red following the Sirius Star Chromosome Kit (Abcam) guidelines. 
Post staining, sections were rinsed with 1 % acetic acid, and images 
captured using an EVOS FL Auto 2 microscope (Thermo Fisher Scientific, 
Waltham, MA, USA) or Olympus VS200 at 20 × magnification.

The immunofluorescence analysis of tissues was performed as 
described [19]. Following fixation and permeabilization, lung sections 
were blocked with 10 % normal goat serum and incubated with primary 
antibodies overnight at 4 ◦C. Nuclei were stained with DAPI, followed by 
incubation with fluorescent secondary antibodies.

2.4. Cell culture

ScienCell provided human pulmonary fibroblast-adult (HPF-a) cells, 
which were then cultured in DMEM enhanced with 100 μg/ml strepto-
mycin, 100 U/ml penicillin,10 % fetal bovine serum, and 2 mM L-Glu-
taMAX (Gibco). The cells were grown at 37 ◦C in a CO2 incubator. After 
stabilizing the cell state, the cells were treated further. Cell density was 
changed as needed for particular studies. THP-1 cells were cultivated at 
37 ◦C in a CO2 incubator with RPMI1640 supplemented with 10 % FBS, 
100 U/ml penicillin and 100 μg/ml streptomycin. For a duration of 24 h, 
THP-1 cells were treated with 50 nM/well of phorbol acetate (PMA) in 
order to trigger their differentiation into macrophages.

2.5. Western blot assays

Western blot was used to measure the protein levels in HPF-a cells 
and mouse lung tissues. A Tanon scanner was used to visualize the re-
sults of the experiment. To summarize, 24-well plates containing normal 
or transfected HPF-a cells were grown, treated with TGF-β1 or condi-
tional culture media, and then twice washed with PBS. Protease 
inhibitor-containing cell lysis solution (100:1) was used to extract pro-
teins. Similar steps were taken for tissue protein extraction: tissues were 
crushed, cell lysis buffer with protease inhibitors was added, and the 
mixture was incubated at − 80 ◦C for the whole night. Following the 
manufacturer’s instructions, the BCA assay was used to determine the 
extracted protein concentration (Beyotime). After adjusting the con-
centration, loading buffer was added, and the sample was successfully 
prepared by boiling it for five minutes at 100 ◦C to denature the protein. 
The protein sample was separated using sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis, then it was transferred to 
PVDF membranes and blocked for an hour at room temperature using 
Tris-buffered saline with 5 % skim milk powder in Tween 20 (TBST). 
After that, the PVDF membrane was incubated with the primary anti-
body in a chromatography cabinet at 4 ◦C for at least 16 h. The PVDF 
membrane was treated with TBST four times the next day, and it was 
then left to incubate for one hour at room temperature with the sec-
ondary antibody. The membrane was treated with a luminous solution 
and photographed following three further washing.

2.6. Real-time quantitative PCR (qRT-PCR)

To assess the relative mRNA expression of Inmt, qRT-PCR was used. 
TRIzol reagent (Invitrogen) was used to extract total RNA from mouse 
lung tissues in accordance with the manufacturer’s instructions. The 
concentration of RNA was then measured with a Thermo Fisher Scien-
tific NanoDrop spectrophotometer. After that, the RNA samples were 
reverse transcribed into cDNAs and normalized to 400 ng. Using these 
cDNA samples as templates, cycle threshold (Ct) and ΔCt values were 
analyzed by qRT-PCR. The Bio-Rad Opticon monitoring software was 
utilized to quantify ΔΔCt. The endogenous reference (Gapdh) was used 
to standardize the relative quantification of mRNA expression.

2.7. CCK-8, bromodeoxyuridine (BrdU) labeling and cell migration 
assays

Cell viability was evaluated using the CCK-8 test in accordance with 
the manufacturer’s instructions (Dojindo, Japan). After the cells were 
fully treated, 10 μl of CCK-8 solution was added to each well of a 96-well 
plate, and the mixture was incubated for an hour without light at 37 ◦C. 
The absorbance at 450 nm was then determined with a spectropho-
tometer. By calculating the percentage difference between the experi-
mental group’s survival and the control group’s, cell viability was 
ascertained.

Transfected cells were seeded on polylysine-treated glass slides and 
cultured until reaching optimal density, at which point TGF-β1 was 
introduced. BrdU reagent (Yeasen, 40204ES60) was dissolved in PBS 
and added to the medium at a 1:1000 dilution. Following a 4-hour in-
cubation period, cells were fixed with 4 % paraformaldehyde at 4 ◦C, 
followed by three PBS washes. Subsequently, denaturation was achieved 
with 2 N HCl/0.3 % Triton X-100 at room temperature for 30 min, fol-
lowed by incubation with 0.1 M boric acid buffer (pH 8.0) for 10 min 
and blocking with goat serum at room temperature for 2 h. The cells 
were then exposed to a BrdU antibody (SC-32323, Santa Cruz) overnight 
at 4 ◦C. After PBS washing, cells were incubated with appropriate 
fluorescent dye-conjugated secondary antibodies in darkness for 2 h. 
Following three additional PBS washes, cells were mounted with 
mounting medium (P36931, Life Technologies). Subsequent imaging of 
the slides was performed using a fluorescence microscope (Olympus 
IX70).

An assay for wound healing was used to assess the migratory capacity 
of cells. After being planted at a density of 1 × 10^5 cells per well in 24- 
well plates, the cells were kept at 37 ◦C until 90 % confluency was 
reached. Next, using a sterile 200-μl pipette tip, a medium-width straight 
line was gently drawn vertically in the middle of each well. The plates 
were then cleaned using PBS three times to get rid of any leftover cell 
debris, and then new standard media was put to each well to encourage 
cell growth. After that, the cells were stimulated experimentally, and at 
0,24, and 48 h after scratching, digital pictures of the wound gaps were 
taken. Using ImageJ, the distances between the wound edges were 
measured.

2.8. siRNA-mediated knockdown and construction of stable cell lines

Shanghai Jima Pharmaceutical Co. Ltd. provided the siRNAs. 
Following the manufacturer’s instructions, cell samples were transfected 
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with 60 nM siRNA duplexes using Lipofectamine 3000 (Thermo Fisher 
Scientific) diluted in serum-free medium.

Human pulmonary fibroblast-adult (HPF-a) cells were seeded at a 
density of 3 × 104 cells per well were seeded into a 24-well plate. After 
24 h, the culture medium was replaced with lentiviral supernatant 
(Corues Biotechnology, Nanjing, China). Fluorescence was observed 48 
h post lentivirus infection. Stable HPF-a cells overexpressing INMT were 
obtained through selection with 2 μg/ml puromycin. MMP12- 
overexpressing THP-1 cells were directly purchased from Corues 
Biotechnology.

2.9. Spatial and single-cell transcriptomic sequencing

Sample collection, Spatial transcriptomic sequencing (GSE183683) 
and Single-cell sequencing (GSE183682) were detailed in our previous 
publication [20].

2.10. RNA scope

RNA scope in situ hybridization followed the ACD protocol (LOT 
2011249), with lung tissues prepared identically to those for scRNA 
sequencing.

2.11. Pseudotime analysis

Pseudotime analysis [21] for selected cell populations was per-
formed using Monocle2; its function is to infer a pseudotime based on 
the UMAP coordinates. The ordering of cells from a branched process 
can be represented as a tree.

2.12. Filtering of prognosis-related genes and construction of a gene risk 
model

In order to create a profibrotic macrophage AM3-related gene risk 
model, IPF cohorts from three centers were used. First, the prognostic 
significance of each gene in the expression matrix was evaluated using 
univariate Cox analysis [22]. All the genes associated with prognosis 
were identified; we crossed these genes with the 46 AM3 signature genes 
to identify 21 genes. The “glmnet” package [23] in the R programming 
language was used to perform least absolute shrinkage and selection 
operator (LASSO) regression analysis on the 21 genes, and the minimum 
mean cross-validated error was chosen as λ value so that we could obtain 
10 genes. Then, to further screen the AM3 genes associated with prog-
nosis, 10 genes (“NINJ1,” “EMP1,” “IFITM2,” “LHFPL2,” “SPP1,” “IER3, 
” “BASP1,” “MARCKS,” “LGMN,” and “PLA2G7”) were extracted from 
the LASSO regression and subsequently enrolled in stepwise Cox 
regression. This created a risk model that contained four genes: IER3, 
EMP1, LGMN, and LHFPL2. The Cox coefficients of these four genes 
were obtained from the multivariate Cox proportional hazards regres-
sion analysis. Lastly, the risk score was calculated according to the co-
efficient and expression value of each gene. Using the median risk score, 
risk groups were divided into two categories (high-risk and low-risk 
groups). The prognostic significance of risk groups was evaluated 
using Kaplan-Meier curves and log-rank tests. After that, the risk score 
was examined using univariate and multivariate Cox regression to 
determine whether it was an independent factor affecting the prognosis 
of IPF patients. The risk group and gender were taken into account as 
categorical variables in the Cox regression analysis. Age and risk score, 
however, were regarded as continuous variables.

2.13. Cell type enrichment analysis via MIA

To elucidate the significance of gene expression overlap among 
spatial transcriptomics (ST) data and specific cell markers, a hyper-
geometric distribution test was employed. This analysis facilitated the 
identification of enriched or depleted cell types within the spatial 

context, contributing to the understanding of cellular dynamics in 
fibrotic lung tissue.

2.14. scRNA-seq and spatial RNA-seq integration using Cell2location

We used the Cell2location [24] to compute the cell abundance and 
derive the spatial distribution of cell types in lung tissues.

2.15. Cell-cell communication analysis

The CellChat R toolkit, a cell-to-cell interaction analysis tool that 
investigates the function of ligand-receptors in particular signaling 
pathways (https://github.com/sqjin/CellChat), was used to identify 
cell-cell interaction networks [25]. This analysis involved determining 
potential interactions between receptors expressed in one cell lineage 
and ligands expressed in another, or within clusters. For spatial tran-
scriptomic cell communication analysis, we incorporated the spatial 
locations of cells to infer spatially proximal cell-cell communication.

2.16. Enrichment analysis

Unless otherwise specified, we conducted enrichment analysis using 
the R package clusterprolifer, focusing on differential genes meeting the 
criteria of log2 fold change > 1 and adjusted p-value < 0.01.

2.17. Statistics

Statistical analyses were conducted using R (version 4.1.0), with 
significance set at P < 0.05. Unless otherwise specified in the figure 
legends, comparisons between two groups were assessed using the un-
paired Wilcox test with two-tailed P-values. Quantification of staining 
and blot images was performed using ImageJ software (National In-
stitutes of Health, USA).

3. Results

3.1. Silica particles cause aberrant fibroblast-macrophage interactions in 
mouse silicosis model

To explore their intricate dynamics and molecular signaling path-
ways involved in lung fibrosis, we conducted a combined analysis using 
our previously published single-cell and spatial transcriptomic RNA-seq 
data [20,26] at acute inflammation (day 7) and collagen deposition (day 
56) stages (Fig. 1A).

Using CellChat [27] to assess cell-cell communication between fi-
broblasts and myeloid cells, we found significantly elevated SPP1 and 
APOE signaling at both 7 and 56 days post SiO2 treatment, both asso-
ciated with pulmonary fibrosis (Fig. S1A-B) [28,29]. Additionally, 
aberrant signals including ICAM, GDF, cholesterol, FGF, and THBS were 
observed during fibrosis [30–33]. Interestingly, despite some enhanced 
signals, the SiO2 group exhibited a decrease in total interactions and 
interaction strength compared to the NS group at both stages(Fig. 1B).

To pinpoint cell populations with significant interaction changes, we 
compared the number of interactions and interaction strength using 
differential interaction circle plots (Fig. 1C) and heatmaps (Fig. 1D). 
Results revealed a reduction in interactions between lung fibroblasts and 
macrophages(Fig. 1C-D), contrasting with previous literature suggesting 
enhanced interactions during fibrosis progression [34]. This might be 
attributed to the spatial and cellular heterogeneity of fibroblasts and 
macrophages.

3.2. Silica particles decrease the number of Inmt fibroblasts and increase 
that of pro-fibrotic Grem1 fibroblasts

To investigate the role of fibroblast heterogeneity in pulmonary 
fibrosis, we analyzed all fibroblasts from the scRNA-seq data and 
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identified 5 fibroblast subclusters: Inmt fibroblast, Grem1 fibroblast, 
universal fibroblast, Hhip fibroblast, and Myofibroblast (Fig. 2A-B;
Table. S1). Inmt fibroblasts, characterized by high expression of Inmt, 
decreased after silica treatment, whereas Grem1 fibroblasts, known for 
their inflammatory-proliferative properties [26], increased significantly 
(Fig. 2C and S2A).

Inmt fibroblasts exhibited a high expression of alveolus function- 
associated genes and potential responsiveness to toxic substances 
(Fig. 2D). Grem1 fibroblasts, on the other hand, upregulated collagen- 
related genes such as Tnc and Col7a1 and showed increased Runx1 
expression(Fig. 2B), implicated in lung fibrosis development [35]. 
Progeny analysis [36] revealed high TGFb signaling activity in Grem1 
fibroblasts and low activity in Inmt fibroblasts (Fig. 2E). Consistently, 
Gene Ontology (GO) analysis indicated that Inmt fibroblasts are 
involved in cellular detoxification and alveolus function, whereas 
Grem1 fibroblasts are enriched in inflammation and fibrogenesis-related 
terms (Fig. 2F).

Western blot, qPCR and immunofluoresence analyses confirmed the 
decreased expression of Inmt in lung tissues post-silica treatment 
(Fig. 2G-I and S2B). Spatial transcriptomics using Cell2location [24]
showed that Inmt fibroblasts predominated in uninjured lung tissues, 
while Grem1 fibroblasts localized to injury sites (Fig. 2J). Trajectory 
analysis by monocle2 [37] indicated that Grem1 fibroblasts might 
derive from Inmt fibroblasts (Fig. 2K).

To delve deeper into Inmt’s function, we performed GO analysis of 
Inmt fibroblast marker genes, revealing roles in fibrosis, such as cell- 
matrix adhesion and extracellular matrix organization (Fig. 3A). INMT 
knockdown in human pulmonary fibroblast-adult (HPF-a) cells 
enhanced fibroblast viability, while INMT overexpression had no sig-
nificant effect compared to controls (Fig. S2C-D). INMT knockdown also 
increased BrdU positive fibroblast numbers induced by TGF-β1 (Fig. 3B- 
C), confirming the role of INMT in cell proliferation [38]. Furthermore, 
INMT knockdown significantly enhanced fibroblast migration 
(Fig. 3D–E) and activation markers (Fig. 3F-I). Conversely, INMT 
overexpression suppressed TGF-β1-induced proliferation (Fig. 3J-K), 
migration (Fig. 3L-M). and fibroblast activation markers (Fig. 3N-Q), 
confirming INMT’s inhibitory role in these fibrosis-related phenotypes.

We also analyzed a previously published dataset on bleomycin- 
induced lung fibrosis [39] and identified eight fibroblast subtypes, 
including Inmt and Grem1 fibroblasts (Fig. S2E ). Consistent with our 
findings in the silica model, Inmt fibroblasts decreased while Grem1 
fibroblasts increased after bleomycin treatment (Fig. S2F ). Inmt fibro-
blasts were associated with alveolus function and response to toxic 
substances, while Grem1 fibroblasts were linked to immune cell 
chemotaxis and fibroblast migration (Fig. S2G-H). Progeny analysis [36]
showed high TGFβ signaling in Grem1 fibroblasts and low TGFβ 
signaling in Inmt fibroblasts in the bleomycin model (Fig. S2I ).

3.3. Silica particles induce monocyte-derived alveolar macrophage

Macrophage subclustering revealed two main groups: tissue-resident 
interstitial macrophages (IMs) and alveolar macrophages (AMs) 
(Fig. 4A-B). IMs were identified through the expression of C1qa, C1qb, 
and C1qc (Fig. 4B). Both AMs and IMs expressed Lyz2, Cd68, and 
Adgre1, while Marco and Il18 were exclusively present in AMs 
(Fig. S3A).

Among the AMs, three distinct subtypes were identified: AM1, AM2, 

and AM3. AM1 macrophages, associated with cell maturity and tissue 
homeostasis (Ptbp3, Cib2, and Pparg), were predominantly found in the 
lungs of control mice, whereas AM3 macrophages, with a pro-fibrotic 
phenotype (Gpnmb, Vegfa, Spp1, Ctss, Lilrb4a, and Litaf), predomi-
nated in silica-treated mice (Fig. 4C and Fig. S3B; Table. S2). Monocle 
analysis indicated that AM3 macrophages originated from monocytes 
(Fig. 4D), a finding further confirmed by re-analysis of Ccr2− /− mice 
data [40] (Fig. S3C-G; Table. S3).

To elucidate the connection between AM3 and lung fibrosis, we 
utilized the Comparative Toxicogenomics Database [41] to investigate 
the expression profiles of 947 genes linked to pulmonary fibrosis. 
Comparative analysis identified 117 pulmonary fibrosis-related genes 
expressed in AM3 macrophages, including pro-fibrotic genes distinct 
from those in AM1 and AM2. While AM1 macrophages expressed 
“generic” genes associated with lipid and tissue homeostasis, AM3 
macrophages were enriched with pro-fibrotic genes associated with 
fibroblast activation (Fig. 4E-F; Table. S4-5). Immunofluorescence 
staining and Cell2location analysis showed that AM3 macrophages 
localized to damaged lung regions, supporting their role in fibrosis 
progression (Fig. 4G-H). In contrast, AM1 macrophages were more 
evenly distributed in normal group and not specifically associated with 
fibrotic areas.

In the bleomycin-induced lung fibrosis model [42], we also identified 
three subclusters (AM1, AM2, and AM3) within the macrophage popu-
lation (Fig. S3G-J;Table. S6). Similar to our silica-induced fibrosis 
model, AM1 and AM2 were comprised of cells from both the 
bleomycin-treated and saline-treated groups, while AM3 macrophages 
were primarily found in the bleomycin-treated group (Fig. S3J). 
Comparative analysis revealed 141 pulmonary fibrosis-related genes in 
the bleomycin dataset, with 85 genes more frequently expressed in AM3, 
including Mmp12, Timp2, Mmp14, Spp1, Pdgfa, Fn1, Itgam, and Gpnmb 
(Fig. S3K and Table. S7). A pro-fibrotic AM cluster was also observed in 
lung tissue samples from individuals with IPF [43], sharing common-
alities with the AM3 in mice with silica-induced and bleomycin-induced 
pulmonary fibrosis, evidenced by 46 shared genes such as Gpnmb, Spp1, 
and Itgam (Fig. S3l and Table. S 7).

To determine the clinical relevance of pro-fibrotic AM3, we analyzed 
gene expression data (GSE70867) from IPF patients. Adjusting for sex 
and age, 2027 genes were predictive of mortality (Table. S8), with 21 
out of 46 AM3 signature genes included. LASSO regression (Fig. S4A) 
identified 10 significant genes, refined to 4 (IER3, EMP1, LGMN, 
LHFPL2) by Cox regression for a risk score. The risk score derived from 
AM3 feature genes was an independent factor affecting IPF prognosis 
(Fig. S4B-4 C;Table. S9).

3.4. Maintaining AM3 in fibrotic niches requires the Csf1/Csf1r signal

To investigate the survival support mechanisms of monocyte-derived 
AM3, we reviewed existing literature and found that Csf1/Csf1r 
signaling is critical for the maintenance of AMs in mutant mice [44,45]. 
When mice were exposed to silica or bleomycin, Csf1r was elevated in 
the AM3 cluster (Fig. 5A and Fig. S5A). Therefore, we explored the cells 
expressing Csf1r ligands Csf1 and Il34, and identified that alveolar type 
II cells and fibroblasts expressed Il34, whereas fibroblasts, endothelial, 
epithelial cells, neutrophils and AM3 expressed Csf1 (Fig. S5B). Our 
analysis revealed that approximately 20 % of AM3 macrophages 
expressed Csf1 in both murine and human datasets (Fig. 5A and B and 

Fig. 1. Silica particles decrease fibroblast-macrophage interactions in mouse silicosis model (A) The schematic workflow illustrates the preparation of scRNA- 
seq and spatial sequencing (ST) libraries, computational analysis, and experimental design. (B) The total interactions and interaction strength in the inferred cell-cell 
communication networks under different biological conditions were computed. The red column represents the normal saline group (NS), while the indigo column 
represents the silica particles group (SiO2). (C) A circle plot was employed to visualize the differential interactions or interaction strength in the cell-cell commu-
nication network between the NS and SiO2 groups. Red (or blue) colored edges indicate increased (or decreased) signaling in the SiO2 group compared to the NS 
group. (D) CellChat presents the differential interactions or interaction strength in greater detail using a heatmap. The top colored bar plot shows the sum of each 
column of absolute values displayed in the heatmap (incoming signaling), while the right colored bar plot shows the sum of each row of absolute values (outgoing 
signaling). In the colorbar, red (or blue) denotes increased (or decreased) signaling in the SiO2 group compared to the NS group.
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Fig. S5C), which was corroborated through bulk RNA sequencing of 
murine models and examination of human lung tissue samples [46]
(Fig. S5D). In a human IPF dataset [47] (Fig. S5E), we identified the 
AM3 cluster (Fig. 5C-D) and observed increased CSF1R expression in IPF 
patients, implicating the CSF1/CSF1R pathway in the disease process 
(Fig. 5E). CellChat analysis [25] indicates that AM3 macrophages pro-
duce an autocrine CSF signal promoting their persistence (Fig. 5F). 
Immunofluorescence and Sirius red staining analysis confirmed the 
presence of Csf1+ and Csf1r+ macrophages in fibrotic areas (Fig. 5G).

3.5. Silica particles induce spatial molecular variation in silicosis mouse 
model

To elucidate spatial signature changes post-silica exposure, we per-
formed detailed spatial transcriptomics analysis. Integration and clus-
tering of spatial transcriptomic data revealed nine unique clusters 
(Fig. 6A, leftmost panel). UMAP plot showed aggregation of NS groups, 
while SiO2 groups separated significantly, indicating gene alterations 
induced by silica (Fig. 6A, middle panel). Spatially, clusters 6 and 4 
were localized around bronchial and blood vessels, while clusters 1 and 
3 were situated in lung injury areas caused by silica particles (high-
lighted in yellow circles) (Fig. 6B, column 1 and 2). TGF-β signaling 
pathway enhancement was noted in injured areas (highlighted in red 
circles) (Fig. 6B, column 3). Cell2location [24] analysis showed a 
reduction of Inmt fibroblasts (Fig. 6B, column 4) and an increase of 
AM3 macrophages and Grem1 fibroblasts in injured areas (Fig. 6B, 
columns 5 and 6), suggesting their spatial involvement in lung fibrosis.

We categorized the nine clusters into five major regions: bronchial, 
vascular, interstitial, fibrogenic, and inflammatory zones(Fig. 6A, 
rightmost panel). These regions corresponded to anatomical structures 
and pathological characteristics from H&E staining (Fig. 6B, columns 1 
and 2; Fig. 6C), which is consistent with the enrichment results obtained 
using region-specific markers (Fig. 6D; Fig. S6A). Furthermore, using 
Fmos and Pln as markers, we validated the presence of bronchial and 
vascular zones(Fig. 6E). Collectively, the spatial transcriptomics anal-
ysis revealed unique gene profiles corresponding to distinct anatomical 
and injury regions in fibrotic mouse lungs.

3.6. Silica particles sculpt a fibrotic microenvironment characterized by 
the concurrent presence of AM3 macrophages and Grem1 fibroblasts, 
while devoid of AM1 macrophages and Inmt fibroblasts

To elucidate spatial dynamics among fibroblasts and macrophages, 
we applied Multimodal Integration Analysis (MIA) [48] to integrate 
single-cell data and spatial transcriptomics data. AM3 macrophages 
were significantly enriched within fibrogenic zones, inversely correlated 
with the depletion of Inmt fibroblasts (Fig. 7A), a finding echoed by our 
Cell2location analysis (Fig. 7B, columns 1–3 and 5; Fig. S7A-D).

We visualized the spatial distribution of AM1, AM3 macrophages, 
Inmt, and Grem1 fibroblasts using Cell2location, showing increased 
AM3 macrophages and decreased Inmt fibroblasts in inflammatory and 
fibrogenic zones post-silica-induced lung injury (Fig. 7B, column 2 and 
3). This suggests that AM3 macrophages likely facilitate the differenti-
ation of Inmt fibroblasts into Grem1 fibroblasts, as evidenced by the 
concurrent increase in Grem1 fibroblasts in these same areas (Fig. 7B, 
column 4). Further, AM3 macrophages and Inmt fibroblasts showed 
mutually exclusive enrichment post-injury (Fig. 7B, column 5), with a 

negative correlation in their signature scores within fibrogenic zones 
(Fig. 7C, upper panel). Conversely, AM3 macrophages and Grem1 fi-
broblasts co-localized (Fig. 7B, column 6), with a positive correlation in 
their signature scores (Fig. 7C, lower panel), suggesting AM3’s role in 
facilitating this cellular transition. Finally, our quantified analysis 
confirm the spatial distribution of different cell populations(Fig. 7D and 
Fig. S7E-H).

To further elucidate AM3 and Inmt fibroblasts’ roles in pulmonary 
fibrosis, we conducted differential analysis using spot-level gene 
expression after excluding bronchial and vascular zones. Regions with 
AM3 macrophages but lacking Inmt fibroblasts (identified as red spots 
in Fig. 7E) exhibited heightened inflammation, TGF-β production, and 
fibroblast activation pathways (Fig. 7F). Conversely, regions with Inmt 
fibroblasts without AM3 macrophages (depicted as grey spots in 
Fig. 7E) displayed increased tissue homeostasis and endothelial prolif-
eration (Fig. 7F). Inmt fibroblasts showed a spatial preference for direct 
contact with AT2 cells (Fig. 7G), maintaining tissue homeostasis [49], 
while AM3 macrophages did not show the preference.

To validate the interaction between AM3 and Inmt fibroblasts, we 
performed separate cell interaction analyses for the SiO2 and NS groups 
of spatial transcriptomics data, focusing on AM3, AM1, Grem1 and Inmt 
fibroblasts. The results revealed specific interactions between AM3 and 
Inmt fibroblasts in the SiO2 group, with stronger interactions between 
AM3 and Grem1 fibroblasts (Fig. 8A). We speculate that AM3 stimulates 
Inmt fibroblasts to transform into Grem1 fibroblasts.

To identify key molecule capable of mimicking AM3 for in vitro 
simulation, we conducted a protein-protein interaction (PPI) analysis on 
fibrosis-related genes in AM3 and identified MMP12 as a key molecule 
(Fig.8B-C). Hence, to investigate the activation effect of AM3 on fibro-
blasts, we overexpressed MMP12 in THP-1 cells, followed by PMA in-
duction to differentiate them into macrophages, thereby simulating 
AM3 (Fig.8D). Relative to the control conditioned medium (NC-CM), 
conditioned medium from MMP12-overexpressing macrophages (AM3 
mimic-CM) heightened the expression of fibroblast activation markers 
and Grem1, while reducing Inmt expression (Fig.8E; Fig. S8A-E). 
Nevertheless, INMT overexpression in fibroblasts counteracted this ef-
fect (Fig.8E; Fig. S8A-E), confirming AM3 macrophages’ role in facili-
tating Inmt fibroblasts’ transition to pro-fibrotic Grem1 fibroblasts 
(Fig. 8F).

4. Discussion

In this study, we explored the heterogeneity in pathological alter-
ations within tissues of lung fibrosis, attributing the observed variability 
to differential timing and spatial distribution of pathophysiological 
events. Employing spatial transcriptomics, we achieved a nuanced un-
derstanding of the microenvironmental dynamics and intercellular 
communications within fibrotic regions of the lung. This advanced 
approach facilitated the identification of distinctive gene expression 
patterns, elucidating alterations in cell populations pivotal for homeo-
stasis and pathology.

4.1. Fibroblast subtypes and spatial distribution

Our results revealed that Inmt fibroblasts are associated with cellular 
detoxification and alveolus function, while Grem1 fibroblasts are 
enriched in inflammation and fibrogenesis-related terms. Spatially, Inmt 

Fig. 2. Variability of fibroblast states. (A) UMAP plot shows fibroblasts subsets. (B) UMAP plot shows fibroblasts subsets. (C) Bar plot shows the composition of 
fibroblast subclusters in cells from silica- and saline-exposed animals. To better present and interpret the results, we combined NS_7 and NS_56 into a single NS group, 
and SiO2_7 and SiO2_56 into a single SiO2 group for the cell proportion analysis. All the missing time points are included in the Fig. S2A. (D) Heatmap shows the 
highly expressed genes in Inmt fibroblast. (E) Progeny analysis shows the pathway activity across fibroblast subsets. (F) Dotplot shows GO enrichment terms of Inmt 
and Grem1 fibroblast markers. (G) Western blot probes the protein expression of Inmt after silica treatment. (H) q-PCR probes the mRNA expression of Inmt after 
silica treatment. (I) Immunofluorescence shows the expression of Inmt protein in normal and silica-treated condition. Col1a2 stains for fibroblasts and DAPI stains for 
cell nuclei.Vimentin-stained fibroblast results are in Fig. S2B. (J) Using cell abundance score calculated by Cell2location visualizes Inmt and Grem1 fibroblasts in the 
spatial slides. (K) Monocle2 pseudotime trajectory shows differentiation relationships between distinct fibroblasts subpopulations.
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fibroblasts and Grem1 fibroblasts exhibit mutually exclusive distribu-
tion patterns. Previous studies have also explored the spatial heteroge-
neity of fibroblasts. For instance, Schiller et al. found that Sfrp1 
intermediate fibroblasts are commonly located adjacent to fibroblastic 
foci in IPF patients but are rarely present in areas of severe fibrosis 
marked by fibroblastic foci [50]. Similarly, in colorectal cancer (CRC) 
research, FAP fibroblasts were found to be prevalent in the desmoplastic 
structures of CRC cancer tissues, promoting cancer progression [51]. 
These findings highlight that fibroblasts exhibit not only identity het-
erogeneity but also spatial heterogeneity, which plays a crucial role in 
disease progression and warrants further investigation.

The decrease in the frequency of Inmt fibroblasts and the increase in 
that of Grem1 fibroblasts were observed in both silica-induced and 
bleomycin-induced fibrosis. This suggests that Inmt fibroblasts might 
serve as a reservoir, being induced into other types upon external 
stimuli, with the Grem1 subtype promoting pulmonary fibrosis. 
Whether Inmt fibroblasts can differentiate into other subtypes besides 
Grem1 remains to be explored. Maintaining the homeostatic function of 
Inmt fibroblasts and reducing the pro-fibrotic capacity of Grem1 fibro-
blasts could offer therapeutic opportunities for pulmonary fibrosis. 
Further research is needed to determine the relationship between Inmt 
fibroblasts and known subtypes like lipofibroblasts [3] or lung special-
ized fibroblasts (NPNT+ Alveolar) [52].

4.2. Role of Inmt and INMT in fibroblasts

Our study suggests that Inmt inhibits fibroblast proliferation, acti-
vation, and migration, similar to its role in prostate cancer [53]. How-
ever, the roles of Inmt (in mice) and INMT (in humans) might be distinct, 
complicating the comparison of in vitro experiments from Fig. 3 with 
scRNA-seq data from mice. Nevertheless, Inmt expression is decreased in 
both mouse and human fibroblasts when comparing normal and fibrotic 
groups [54], suggesting a conserved role across species. Although the 
fibroblast composition is more complex in human lung tissue, we still 
found that INMT is predominantly expressed in the specialized lung 
fibroblast (NPNT+ alveolar) subpopulation [52]. Further research is 
needed to determine whether Inmt fibroblasts in human lungs function 
similarly to those in mice.

4.3. Macrophage subtypes and spatial distribution

Traditionally, macrophages are classified into M1 and M2 types [55]. 
However, our analysis of single-cell data from silica-induced fibrosis 
revealed that alveolar macrophages (AMs) could be divided into AM1, 
AM2, and AM3, similar to findings in asbestos-induced fibrosis [56]. 
AM1 macrophages in both studies are associated with homeostatic 
functions (Ear1 and Fabp1), AM2 macrophages with inflammation 
(S100a1 and Ctsk), and AM3 macrophages with fibrosis (Fn1 and Spp1). 
Additionally, we discovered that the pro-fibrotic AM3 subtype appears 
not only in silica-induced pulmonary fibrosis but also in 
asbestos-induced [56] and bleomycin-induced pulmonary fibrosis [57], 
as well as in the lungs of critically ill COVID-19 patients with fibrosis 
(CD163/LGMN-MΦ) [58]. Our analysis found that AM3 could derive 
from monocytes, suggesting that macrophages achieve generalized 
functions and specialization via a lineage-wide core transcriptomic 
signature and tissue-specific programming influenced by various 

microenvironmental cues [59,60]. Our study also found that AMs 
exhibit spatial heterogeneity. Spatial transcriptomics indicated a 
mutually exclusive distribution pattern between AM1 and AM3. AM1 
macrophages primarily localize in undamaged alveolar regions, whereas 
AM3 macrophages are predominantly found in inflamed and fibrotic 
areas. Similar disease-dependent spatial distributions of macrophage 
subtypes have been observed in other conditions [51,61,62]. Inter-
vening in specific macrophage subtypes at particular sites could enhance 
our understanding of disease mechanisms.

4.4. Monocyte-derived alveolar macrophage AM3

Single-cell RNA sequencing reveals variability within cell pop-
ulations that arises during illness [63–65]. We demonstrated how data 
from diseased individuals and animal models can be combined to 
identify shared processes in disease pathogenesis. Based on our 
scRNA-seq analysis, AM3 emerged during pulmonary fibrosis [47,57]. 
Immunofluorescence further confirmed the presence of AM3. Interest-
ingly, AM3 were characterized by increased expression of Spp1, Marcks, 
Ctsb, Mafb, Gpnmb, Itgam, Csf1r, and Mmp14. Some of these genes were 
associated with fibrosis [66–72]. Of note, AM3-related four-gene 
signature (LGMN, IER3, EMP1, and LHFPL2) predicts survival in IPF 
patients. We propose that depletion of the monocyte-derived alveolar 
macrophage AM3 might slow the progression of pulmonary fibrosis. 
Disruption of the Csf1/Csf1r signal of AM3 might help in this regard.

4.5. Fibroblast-macrophage interactions

The role of macrophages in promoting fibroblast activation and 
differentiation in fibrosis is well established, but the interactions be-
tween different macrophage and fibroblast subtypes remain unclear. 
Our analysis revealed an increase in AM3 macrophages and Grem1 fi-
broblasts, alongside a reduction in Inmt fibroblasts and AM1 macro-
phages in fibrotic lung areas. We validated that monocyte-derived AM3 
could decrease Inmt fibroblast populations and increase Grem1 fibro-
blast numbers, potentially disrupting lung homeostasis. AM3 macro-
phages might drive the differentiation of Inmt fibroblasts into Grem1 
fibroblasts. Our in vitro experiments showed that AM3 macrophage su-
pernatant decreases Inmt levels and increases Grem1 levels in fibro-
blasts. However, this does not exclude that fibroblasts might also affect 
AM3 macrophages. Recent studies show that stromal cells like fibro-
blasts can regulate immune cell functions, affecting lung fibrosis [73, 
74]. The immuno-regulatory function of fibroblasts in silicosis via 
CXCL14 [75] provides a new perspective for understanding fibrosis. 
Understanding the bidirectional interactions between fibroblasts and 
macrophages may be crucial for developing effective therapeutic stra-
tegies for fibrotic diseases. Our research implies that targeting the AM3 
and its signaling pathways could promote the homeostatic function of 
Inmt fibroblasts and reduce pulmonary fibrosis. Future studies should 
aim to identify the key regulatory factors of these interactions and 
explore their potential as therapeutic targets.

4.6. Spatial transcriptomics and disease progression

Bulk RNA-seq lacks spatial information about gene expression, and 
changes in gene expression at the site of injury onset may be critical in 

Fig. 3. INMT is involved fibroblast dysfunction in lung fibrosis. (A) Gene Ontology (GO) analysis was conducted on marker genes of Inmt fibroblasts. (B-C) BrdU 
incorporation was examined via cellular immunofluorescence. Merged immunofluorescence images of BrdU (red) and DAPI (blue) reveal that INMT downregulation 
enhances cell proliferation. (D-E) The wound-healing assay was utilized to evaluate the influence of INMT downregulation on the migration of human pulmonary 
fibroblast HPF-a. (F-I) Western blotting (WB) was performed to investigate the effects of INMT knockdown on activation markers FN1, Collagen 1, and ACTA2 in 
human pulmonary fibroblast HPF-a. (J-K) BrdU incorporation examined the effects of INMT overexpression on TGF-β1-induced fibroblast proliferation. (L-M) The 
wound-healing assay was utilized to evaluate the influence of INMT overexpression on the migration of human pulmonary fibroblasts. (O-Q) WB was performed to 
investigate the effects of INMT overexpression on activation markers FN1, Collagen 1, and ACTA2 in HPF-a fibroblasts. All the data are presented as the mean ± SD, 
n = 3. Asterisks (*) denote comparisons with the PBS-si-NC or PBS-Vector group: *P < 0.05, * *P < 0.01, * **P < 0.001. Hash symbols (#) denote comparisons with 
the TGF-β1-si-NC or TGF-β1-Vector group: #P < 0.05, ##P < 0.01, ###P < 0.001.
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Fig. 4. Alveolar macrophage cell heterogeneity. (A) UMAP plot shows macrophage subsets. (B) Dot plot demonstrates the gene expression of macrophages 
subpopulations in our dataset. (C) Bar plot shows the composition of macrophage subclusters in cells from silica- and saline-exposed animals. To better present and 
interpret the results, we combined NS_7 and NS_56 into a single NS group, and SiO2_7 and SiO2_56 into a single SiO2 group for the cell proportion analysis. All the 
missing time points are included in the Fig. S2B. (D) Monocle2 pseudotime trajectory shows differentiation relationships between distinct myeloid subpopulations. 
(E) Heatmap shows the genes related to fibrosis. (F) Dotplot shows GO enrichment terms of AM1 and AM3 macrohpages markers. (G) Immunofluorescence show the 
macrophages expressed F4/80, Mmp12 and Gpnmb before and after silica treatment. (H) Using cell abundance score calculated by Cell2location visualizes AM1 and 
AM3 macrophages in the spatial slides.
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Fig. 5. Autocrine signaling of Csf1/Csf1r in monocyte-derived alveolar macrophages (AM3) maintenance within fibrosis. (A) Dotplot showcases the 
expression of Csf2rb, Csf1r, and Csf1 in AM subclusters in response to silica and saline exposures. (B) Feature plot highlights the specific expression of Csf1 in the 
AM3 subset post-silica treatment. (C) UMAP and (D) Bar plot demonstrating composition of the macrophage subclusters in human IPF patients or donors from 
GSE135893. (E) Violin plots representing heterogeneity in expression of CSF1 and CSF1R in macrophage subclusters from normal and fibrotic lungs (GSE135893). 
* ** *: p ≤ 0.0001, * ** : p ≤ 0.001, * *: p ≤ 0.01, * : p ≤ 0.05, ns: p > 0.05. Two-sided Wilcoxon test. (F) Cellchat analysis indicated autocrine CSF signal pathway 
within AM3. (G) Immunofluorescence and Sirius Red staining on the serial slides showcase Csf1 and Csf1r expression in AMs within silica-induced fibrosis, with white 
arrows indicating Csf1 and Csf1r positive macrophages.
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Fig. 6. Silica particles induce spatial molecular variation in silicosis mouse model. (A) The distribution and unbiased clustering of the four spatial sequencing 
(ST) samples was presented using UMAP in the leftmost and middle panel. (B) The first column shows the unbiased clusterings of spatial slides in middle panel from 
Fig. 6A; the second column shows hematoxylin and eosin (H&E) staining of tissue sections in ST samples (yellow circle indicates the injured tissue); the third column 
shows the TGFb signal score calculated by Progeny (red circle indicates the injured tissue); and the others show the cell abundance of Inmt fibroblasts and AM3 
macrophages as well as Grem1 macrophages. (C) ST slides were classified into 5 regions based on anatomical structure and pathological characteristics revealed by 
HE staining. (D) GO terms of genes significantly enriched in each regions of Fig. 6C. (E) RNASCOPE in NS_7d and NS_56d groups for bronchial zone (Fmo3) and 
vascular zone (Pln).
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disease progression. We utilized a spatially resolved transcriptome 
technique to map the transcriptional changes during lung injury and 
identify genetic alterations in the lesion region. Our spatial tran-
scriptome sequencing results revealed that lung tissue can be divided 
into five regions. Notably, in the lung interstitial zone, excluding the 
bronchial and vascular zones, SiO2 stimulation resulted in the formation 
of inflammatory and fibrogenic zones. However, these damaged areas 
did not exhibit the same pattern of periphery-to-center progression seen 
in mechanical tension-induced pulmonary fibrosis or IPF of unknown 
etiology [76]. Further investigation of the spatial distribution of fibro-
blast subtypes and alveolar macrophage subtypes in the mechanical 
tension-induced pulmonary fibrosis model could enhance our under-
standing of the differences between different causes of pulmonary 
fibrosis. In this study, we found that Inmt fibroblasts with tissue ho-
meostasis functions co-localized with AM1 macrophages, while 
pro-fibrotic AM3 macrophages co-localized with Grem1 fibroblasts. The 
spatial misalignment of Inmt fibroblasts and AM3 macrophages suggests 
abnormal crosstalk between Inmt fibroblasts and AM3 macrophages in 
silicosis. However, the specific molecular mechanisms underlying this 
process remain to be elucidated.

5. Conclusion

In this study, we explored the heterogeneity in pathological alter-
ations within tissues of lung fibrosis, attributing the observed variability 
to differential timing and spatial distribution of pathophysiological 
events. Employing spatial transcriptomics, we achieved a nuanced un-
derstanding of the microenvironmental dynamics and intercellular 
communications within fibrotic regions of the lung. This advanced 
approach facilitated the identification of distinctive gene expression 
patterns, elucidating alterations in cell populations pivotal for homeo-
stasis and pathology. Specifically, we found a subset of fibroblasts, 
called Inmt fibroblasts, exerted a suppressive role in the fibrotic 
microenvironment. Our analysis revealed an increase in AM3 macro-
phages and Grem1 fibroblasts, alongside a reduction in Inmt fibroblasts 
and AM1 macrophages distributed throughout fibrotic lung areas. We 
validated that monocyte-derived AM3 could decrease Inmt fibroblast 
populations and increase Grem1 fibroblast numbers, potentially dis-
rupting lung homeostasis in response to external challenges. Further-
more, our findings highlighted the central role of fibroblast-macrophage 
interactions in the fibrotic process, suggesting a complex network of 
cellular compartments orchestrating fibrosis development and aberrant 
tissue responses.

Study approval

We used the gene expression in pulmonary fibrosis tissue and clinical 
data included in the GSE135893 dataset, consisting of 10 controls and 
12 IPF cases [43]. For both IPF and control lungs, tissue sampling was 
performed in two centers (VUMC and NTI) at the time of lung trans-
plantation. Ethical approval was granted at the time of the initial study 
[43]. This work has received approval for research ethics from the 
Laboratory Animal Care and Use Committee of Southeast University and 
a proof/certificate of approval is available upon request. All animal 

experiments were approved by the Laboratory Animal Care and Use 
Committee of Southeast University (20190121002).

Environmental implication

As crystalline silica is widely encountered in numerous industrial 
occupations and even in everyday life. Irreversible silicosis caused by 
crystalline silica particles represent significant global disease burden. 
This study elucidated how the fibrotic microenvironment is spatially 
organized in lung fibrosis induced by silica particles. In particular, we 
confirmed that monocyte-derived alveolar macrophages (AM3) can help 
Inmt fibroblasts shift into the profibrotic Grem1 fibroblasts. Our findings 
underscore the need for more effective methods to silica safety man-
agement and provide a possible avenue for minimizing silica-related 
lung damage.

List of abbreviations

List of abbreviations.
AM Alveolar macrophage
AM3 alveolar macrophage subset cluster 3
IM Interstitial macrophage
UMAP Uniform Manifold Approximation and Projection
LASSO Least Absolute Shrinkage and Selection Operator
IPF Idiopathic pulmonary fibrosis
PCA Principal component analysis
scRNA-seq single-cell RNA sequencing
ST Spatial transcriptomics
NS Normal saline
SiO2 Silicon dioxide(Silica particles)
CCR2 C–C chemokine receptor 2
MIA multimodal intersection analysis
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Since SiO2_7 and SiO2_56 have similar spot signatures (Fig. 6B,first column), and NS_7 and NS_56 also share similar spot signatures (Fig. 6B,first column), we 
combined SiO2_7 and SiO2_56 into a single SiO2 group, and NS_7 and NS_56 into a single NS group, thereby enhancing the statistical significance of the data. We then 
performed cell communication analysis on the cellular subtypes within the NS and SiO2 groups. (B) Cytoscape visualizes protein-protein interaction (PPI) analysis on 
fibrosis-related genes in AM3. (C) "MCODE" algorithm in Cytoscape software was used to identify key clustering modules, with MMP12 identified as the module core. 
(D) The process of obtaining macrophage conditioned culture medium (CM) for coculture with fibroblasts. (E) Overexpression of INMT partially reversed the AM3 
mimic-CM induced increase in the expression of FN1, COL1A2, ACTA2 and GREM1.(F) Effects of monocyte-derived AM3 macrophages on fibroblasts function and 
mechanisms in the silicosis process.
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