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Exposure to 6-PPD quinone causes damage on mitochondrial complex I/II 
associated with lifespan reduction in Caenorhabditis elegans 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• 6-PPDQ at environmentally relevant 
concentrations caused mitochondrial 
dysfunction. 

• Complex I/II were involved in induction 
of 6-PPDQ toxicity on mitochondrial 
functions. 

• Decrease in gas-1 and mev-1 expressions 
mediated 6-PPDQ toxicity on lifespan. 

• GAS-1 and MEV-1 regulated 6-PPDQ 
toxicity by inhibiting insulin peptides 
and receptor.  
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A B S T R A C T   

N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone (6-PPDQ) is an emerging pollutant transformed 
from 6-PPD. However, the effect of 6-PPDQ exposure on mitochondrion and underlying mechanism remains 
largely unclear. Using Caenorhabditis elegans as animal model, exposed to 6-PPDQ at 0.1–10 μg/L was performed 
form L1 larvae to adult day-1. Exposure to 6-PPDQ (1 and 10 μg/L) could increase oxygen consumption rate and 
decease adenosine 5′-triphosphate (ATP) content, suggesting induction of mitochondrial dysfunction. Activities 
of NADH dehydrogenase (complex I) and succinate dehydrogenase (complex II) were inhibited, accompanied by 
a decrease in expressions of gas-1, nuo-1, and mev-1. RNAi of gas-1 and mev-1 enhanced mitochondrial 
dysfunction and reduced lifespan of 6-PPDQ exposed nematodes. GAS-1 and MEV-1 functioned in parallel to 
regulate 6-PPDQ toxicity to reduce the lifespan. Insulin peptides and the insulin signaling pathway acted 
downstream of GAS-1 and MEV-1 to control the 6-PPDQ toxicity on longevity. Moreover, RNAi of sod-2 and sod- 
3, targeted genes of daf-16, caused susceptibility to 6-PPDQ toxicity in reducing lifespan and in causing reactive 
oxygen species (ROS) production. Therefore, 6-PPDQ at environmentally relevant concentrations (ERCs) 
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potentially caused mitochondrial dysfunction by affecting mitochondrial complexes I and II, which was associ-
ated with lifespan reduction by affecting insulin signaling in organisms.   

1. Introduction 

The antioxidant of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenedi-
amine (6-PPD) has been widely used in the production of rubber tires. 
During aging process of tire particles, 6-PPD can be released into the 
environment and transforms to 6-PPD quinine (6-PPDQ) [1,2]. Initially, 
6-PPDQ was detected frequently in urban tributaries in different coun-
tries [3,4]. 6-PPDQ was detected in Australian river with concentrations 
ranging from 0.4 to 88 ng/L [3]. 6-PPDQ reached up to 1.56 μg/L in 
urban water system in Pearl River Delta region of China [5]. 6-PPDQ 
could also be detected in outdoor dusts and sediment with concentra-
tions ranging from 0.043 to 1238 ng/g [6–8]. The 6-PPDQ was 
bioavailable to organisms, such as mammals [9,10]. After acute expo-
sure, 6-PPDQ induced mortality, abnormal neuronal function, and 
developmental toxicity in organisms [11–13]. In addition, 6-PPDQ 
exposure damages several organs in mice, including the liver, lungs, 
and kidneys [14–16]. 

Owing to the high sensitivity to environmental exposures [17–19], 
Caenorhabditis elegans has been frequently used to assess toxicity of 
pollutants at environmentally relevant concentrations (ERCs) [20–23]. 
Using this animal model, long-term exposure to 6-PPDQ at ERCs (such as 
1 and 10 μg/L) could result in intestinal toxicity, neurotoxicity, and 
reproductive toxicity [24–29]. In addition, both lipid and dopamine 
metabolisms in C. elegans were disrupted by 6-PPDQ exposure at ERCs 
[30,31]. More recently, it was observed that the lifespan of nematodes 
could be decreased by exposure to 6-PPDQ [32]. The decrease in lifespan 
was associated with the activation in several insulin peptides (INS-6, 
INS-7, and DAF-28) and insulin receptor DAF-2 and the inhibition in 
FOXO transcriptional factor DAF-16 [32]. Accompanied with these 
toxicities, obvious 6-PPDQ accumulation was detected in the body of 
nematodes [32]. 

Mitochondria play an important role in various cellular process, such 
as cellular respiration and cell signaling [33]. Meanwhile, mitochondrial 
dysfunction acts as a key cellular hallmark of toxicity induction of pol-
lutants [34]. Exposure to 6-PPDQ could increase oxygen consumption in 
zebrafish embryos and rainbow trout gill cells [35,36], suggesting the 
possible involvement of mitochondria in controlling 6-PPDQ toxicity. 
However, the association between mitochondrial dysfunction and life-
span reduction in 6-PPDQ exposed nematodes remains unclear. Alter-
ation of mitochondrial complexes could affect longevity and 
aging-related physiological endpoints in C. elegans [37]. In C. elegans, 
mitochondrial function is governed by mitochondrial complexes, such as 
NADH dehydrogenase (complex I) and succinate dehydrogenase (com-
plex II) [38,39]. The subunits of mitochondrial complex I (GAS-1, 
NUO-1, and NUO-6) and mitochondrial complex II (MEV-1) are involved 
in the stress response in C. elegans [40]. 

We assumed that the mitochondrial dysfunction caused by altered 
mitochondrial complex I/II was associated with reduced lifespan in 
nematodes. In the current study, we first investigated the effects of 6- 
PPDQ exposure at ERCs on mitochondrial function and activity of 
mitochondrial complex I/II. After that, we examined the role of the 
subunits of mitochondrial complex I/II in controlling mitochondrial 
activity and lifespan in C. elegans after exposure to 6-PPDQ. Moreover, 
we determined the association between mitochondrial complex I/II 
subunits and insulin signals during the control of lifespan in 6-PPDQ 
exposed nematodes. In C. elegans, our previous studies have demon-
strated the damage of exposure to 6-PPDQ at ERCs on different organs 
[24–29]. In this study, we further found that exposure to 6-PPDQ at 
ERCs could further cause damage on nematodes at the organelle level, 
such as the induction of mitochondrial damage. More importantly, our 
data highlighted the important role of dysregulated mitochondrial 

function as the underlying basis for lifespan reduction in 6-PPDQ 
exposed nematodes. Our results suggested the exposure risk of 
long-term exposure to 6-PPDQ at ERCs in causing damage on mito-
chondrial function and complex I/II, which would further led to 
reduction in lifespan in organisms. 

2. Materials and methods 

2.1. Animal maintenance and 6-PPDQ exposure 

C. elegans was prepared and maintained on normal nematode growth 
medium (NGM) plates as described previously [41]. During the main-
tenance, E. coli OP50 was fed on NGM plates to satisfy the need of larval 
development. The used nematode strain was wild-type N2. 

6-PPDQ exposure concentrations (0.1, 1, and 10 μg/L) were selected 
as our previously described [24], which reflects the ERCs [1,5]. Expo-
sure to 6-PPDQ was performed from L1-larvae till to adult day-1 
(approximately 4.5 days) [32]. To satisfy the developmental re-
quirements of larval animals, OP50 was added to 6-PPDQ solutions to 
the final concentration of approximately 5 × 106 colony-forming units 
[42]. During 6-PPDQ exposure, the working solutions were updated 
daily. To prepare L1-larvae, the adult hermaphrodites were treating by 
bleaching solution (0.45 M NaOH and 2% HOCl) to collect eggs [43]. 
The obtained eggs were allowed to develop on new NGM plates into 
synchronized L1-larvae. 

2.2. Mitochondrial preparation and 6-PPDQ accumulation 

Mitochondria were extracted using a mitochondria extraction kit 
(Jiancheng, Nanjing, China). Approximately 0.1 g nematodes per group 
were washed with PBS buffer to remove bacteria. After that, ice-pre- 
cooled nematodes were added to a glass grinder and ground 30 times 
in an ice bath. The nematode homogenate was transferred to ice-pre- 
cooled centrifuge tubes and centrifuged at 800 g at 4 ℃ for 5 min, fol-
lowed by centrifugation at 15000 g at 4 ℃ for 10 min. The mitochon-
drial precipitate was obtained, washed with 0.2 mL lysate, and re- 
suspended in stock solution for the subsequent experiments. 

The accumulation of 6-PPDQ in mitochondria was analyzed by high- 
performance liquid chromatography with tandem mass spectrometry 
(HPLC− MS/MS) [32]. The mitochondria were extracted and weighed 
using the above-mentioned method. Acetonitrile (1 mL) was added to 
the mitochondrial samples, followed by vigorous crushing for 15 min, 
which was repeated in triplicates. The combined supernatants were then 
passed through C18 clean-up tubes and concentrated to near dryness 
under N2. Finally, the target was reconstituted in 200 μL acetonitrile for 
analysis. The concentration of mitochondrial 6-PPDQ was measured 
using HPLC− MS/MS. Separation was achieved with a BEH-C18 column 
(2.1 × 100 mm, 1.7 µm). Mitochondrial 6-PPDQ was quantified using 
external standards with R2 > 0.999. Detailed information regarding the 
extraction and analysis is provided in Text S1. Three independent ex-
periments were performed. Approximately 1000 nematodes were 
examined for each group. 

The concentration of 6-PPDQ in the exposure solution was then 
determined. According to analysis, concentrations of 6-PPDQ in 0.1, 1, 
and 10 μg/L exposure solutions were 0.09 ± 0.06, 1.021 ± 0.38, and 
9.125 ± 0.57 μg/L, respectively, which were similar to the nominal 
concentrations. 

2.3. Mitochondrial membrane potential assay 

Mitochondrial membrane potential is an important indicator 
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reflecting mitochondrial viability [44]. Mitochondrial membrane dam-
age was evaluated using a JC-1 probe (Beyotime, China). Under high 
mitochondrial membrane potential condition, JC-1 can exist in the form 
of aggregates in the mitochondrial matrix, which will produce red 
fluorescence [44]. However, JC-1 can exist in the form of monomer 
producing green fluorescence when mitochondrial membrane potential 
is low [44]. The nematodes per group were washed with PBS buffer. 
Nematodes were stained with 1 mL 1 ×JC-1 solution for 2 h at 20 ℃. 
After the staining, nematodes were transferred to an agarose slide. Red 
and green fluorescence were detected using a fluorescence microscope. 
Mitochondrial membrane potential (MMP) was calculated as the ratio of 
red to green fluorescence. Three independent experiments were per-
formed. Fifty animals were examined for each treatment. 

2.4. Oxygen consumption rate (OCR) assay 

Alteration of oxygen consumption rate also serve as a useful marker 
for mitochondrial dysfunction [45]. Using phosphorescent 
oxygen-sensitive probes, the OCR of mitochondria can be analyzed [45]. 
After exposure, 100 μL mitochondria per group was added to black 
fluorescent 96-well plate and incubated with 4 μL BBoxiProbe R01 ox-
ygen fluorescence probe. To avoid the influence of oxygen in the envi-
ronment, 100 μL oxygen sealer was added to each well. The fluorescence 
was measured and read at 5 min intervals at an excitation wavelength of 
468 nm and emission wavelength of 603 nm. Three independent ex-
periments were conducted. Approximately 1000 nematodes were 
examined for each group. 

2.5. Adenosine 5′-triphosphate (ATP) content assay 

ATP plays an important role in various physiological and patholog-
ical processes of cells, and the ATP level reflects the state of energy 
metabolism and mitochondrial function [44]. The ATP content was 
quantified using an ATP Detection Kit (Beyotime, China) as described 
[46]. Approximately 0.1 g of nematodes per group were collected. A 
glass homogenizer was used to lyse the nematodes. The homogenate was 
centrifuged at 12000 g for 5 min at 4 ℃ to obtain the supernatant. Ac-
cording to manufacturer’s instructions, an ATP detection working so-
lution was used to measure the background ATP. The samples or 
standard liquids were then added and mixed rapidly. The luminescence 
was measured using a microplate reader (Infinite M200PRO, TECAN). 
Three independent experiments were conducted. Approximately 1000 
nematodes were examined for each group. 

2.6. Mitochondrial complex I/ II activities 

Activities of mitochondrial complexes are helpfu to evaluate the state 
of respiratory electron transport chain (ETC) [47]. Enzymatic activity 
was measured using a Mitochondrial Complex I and II Activity Assay Kit 
(Sangon, China) [48]. Mitochondria of the nematodes were extracted by 
adding extraction 1 and grinding 30 times in an ice bath. The superna-
tant was centrifuged at 11000 g for 15 min at 4 ℃. The supernatant 
collected to reflect the cytoplasmic fluid was transferred to a new 
centrifuge tube. The precipitated mitochondria were extracted to obtain 
mitochondrial fluid. The enzyme activities were measured according to 
manufacturer’s instructions. Complex I was monitored at 340 nm, and 
complex II was monitored at 600 nm for 60 s using a microplate reader 
(Infinite M200PRO, TECAN). Three independent experiments were 
performed. Approximately 1000 nematodes were examined for each 
group. 

2.7. Lifespan assay 

The lifespan of nematodes was analyzed as described previously 
[49]. At the end of exposure, 50 animals from each group were trans-
ferred to fresh NGM petri dish. To avoid effect of egg laying, the 

nematodes were transferred to fresh petri dishes every day. Nematode 
were repeatedly tapped their head with a platinum wire and no response 
was considered as death, and the number of surviving nematodes was 
counted each day. During the lifespan assay, 50% survival was defined 
as the median lifespan. Significances between lifespan curves were 
evaluated by Kaplan-Meier software, followed by the Log-rank test. 
Three independent experiments were conducted. 

2.8. Reactive oxygen species (ROS) assay 

In C. elegans, ROS level reflects the oxidative stress response, which 
can be estimated using the CM-H2DCFDA staining method [24]. Nem-
atodes were washed to remove bacteria at the end of exposure. The 
nematodes were then incubated in solutions containing 1 μM 
CM-H2DCFDA for 3 h in darkness. After washing three times using K 
buffer, the animals were transferred onto 2% agarose pad. Intestinal 
fluorescent signals in nematodes were detected using laser confocal 
microscope under the FITC signaling pathway (excitation/emission 
wavelengths: 488/510 nm). After normalization to intestinal auto-
fluorescence, intensity of intestinal ROS signals was semi-quantified 
using Image J software. Fifty animals were analyzed for each exposure. 

2.9. Genes expression analysis 

Gene expression was analyzed by quantitative real-time polymerase 
chain reaction (qRT-PCR). Nematodes were allowed to settle naturally 
and the supernatant was removed at the end of exposure. TRIzol was 
used to extract RNA, and the quality was assessed based on the value of 
A260/A280 using a Nanodrop One. Three micrograms of mRNA from 
each sample were added to synthesize cDNA. qRT-PCR was conducted 
using SYBR qRT-PCR mix (Vazyme, China). Relative expression levels of 
examined genes were calculated using the 2^-ΔΔCt method. The 
analyzed genes were normalized to the reference gene tba-1 [50]. Three 
replicates were carried out. The primers are shown in Table S1. 

2.10. RNA interference (RNAi) 

To prepare RNAi clones, gene constructs for RNAi were generated in 
L4440 (an empty vector), and confirmed by sequencing. The constructs 
were subsequently transformed into E. coli. HT115 [51]. Before the 
experiment, RNAi cells were cultured on NGM plates containing 1 mM 
isopropylthiogalactoside for 24 h to induce double-stranded RNA 
expression. Nematodes were fed RNAi and the progeny were used for the 
exposure experiment. The control consisted of HT115 expressing L4440 
[52]. qRT-PCR was used to assess RNAi efficiency (Fig. S1). 

2.11. Data analysis 

Data are expressed as mean ± standard deviation (SD). Statistical 
analysis was performed using SPSS Statistics 25.0 software. The statis-
tical significance between different groups was analyzed using one-way 
or two-way analysis of variance (ANOVA) followed by Dunnett’s test. 
Two-way ANOVA was performed to compare the significance among 
different treatment groups. Statistical significance was set at a proba-
bility level of 0.01. 

3. Results 

3.1. Mitochondrial accumulation of 6-PPDQ in C. elegans 

Firstly, 6-PPDQ accumulation in the mitochondria of C. elegans was 
assessed after exposure to 6-PPDQ. No accumulation of 6-PPDQ in the 
mitochondria was observed in nematodes exposed to 6-PPDQ at 0.1 μg/L 
(Fig. 1A). In contrast to this, after exposure to 1 and 10 μg/L 6-PPDQ, the 
internal concentration of 6-PPDQ reached 0.021 ng/mg and 0.888 ng/ 
mg mitochondria weight, respectively (Fig. 1A). Meanwhile, 
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bioaccumulation factor (BAFs) analysis showed that log BAF values of 6- 
PPDQ ranged from 4.32 to 4.95, which further indicated the bio-
accumulation of 6-PPDQ in mitochondria of C. elegans (Fig. 1A). 

3.2. 6-PPDQ exposure affected mitochondrial membrane potential and 
mitochondrial function 

To examine whether 6-PPDQ exposure affected MMP, the JC-1 red/ 
green fluorescence ratio was evaluated. In 0.1 and 1 μg/L 6-PPDQ 
exposed nematodes, the MMP was comparable to that of the control 
(Fig. 1B). Conversely, a moderate but significant fall in MMP was 
observed in 6-PPDQ (10 μg/L) exposed nematodes (Fig. 1B). 

OCR and ATP content were used as parameters to assess mitochon-
drial function. After 6-PPDQ exposure, the oxygen consumption rapidly 
increased and reached a plateau at 20 min (Fig. 1C). In terms of both 
oxygen consumption and ATP content, there was no significant increase 
in nematodes exposed to 6-PPDQ at 0.1 μg/L in comparison to the 
control group (Figs. 1C and 1D). By contrast, the OCR was significantly 

increased in nematodes exposed to 6-PPDQ at 1 and 10 μg/L (Fig. 1C). 
Moreover, exposure to 6-PPDQ (1 and 10 μg/L) significantly decreased 
ATP content compared to that of the control (Fig. 1D). Therefore, 6- 
PPDQ exposure could affect mitochondrial function. 

3.3. 6-PPDQ exposure reduced activities of mitochondrial complexes I 
and II 

Considering the contribution of mitochondrial complexes I and II to 
mitochondrial functions, complex I and complex II enzyme activities 
were examined in nematodes exposed to 6-PPDQ. Exposure to 6-PPDQ 
at 0.1 μg/L did not cause alteration in activities of complexes I and II 
(Fig. 2A). Similarly, the transcription levels of gas-1, nuo-1, nuo-6, and 
mev-1 genes encoding components on mitochondrial complexes I and II 
were not altered in nematodes exposed to 6-PPDQ at 0.1 μg/L (Fig. 2B). 
Conversely, exposure to 6-PPDQ (1 and 10 μg/L) induced the decreased 
activities of complexes I and II in nematodes (Fig. 2A). In addition, after 
exposure to 6-PPDQ (1 and 10 μg/L), the expressions of gas-1, nuo-1, and 

Fig. 1. Mitochondrial 6-PPDQ accumulation and effects of 6-PPDQ exposure on mitochondrial membrane potential and functions. (A) Internal 6-PPDQ concen-
trations and log BAFs in mitochondrion of nematodes exposed to 6-PPDQ at 0.1, 1 and 10 μg/L. The column represents the concentrations of 6-PPDQ in mitochondria, 
and the scatter represents log BAF value. BAFs = Cmit/C6-PPDQ, where Cmit is the concentration of 6-PPDQ in mitochondria of C. elegans and C6-PPDQ is the con-
centration of 6-PPDQ in working solution. (B) Mitochondrial membrane potential of nematodes after 6-PPDQ exposure. (C) Oxygen consumption curve of mito-
chondria and comparison of oxygen consumption rate at 30 min after 6-PPDQ exposure. (D) ATP content of nematodes after 6-PPDQ exposure. Bars represent means 
± SD. **P < 0.01 vs control. 

X. Hua et al.                                                                                                                                                                                                                                     



Journal of Hazardous Materials 472 (2024) 134598

5

mev-1 were decreased (Fig. 2B). Nevertheless, the expression of nuo-6 
was not changed by 6-PPDQ exposure (Fig. 2B). 

3.4. RNAi of gas-1, nuo-1 and mev-1 affected mitochondrial functions in 
6-PPDQ exposed nematodes 

Among genes encoding components on mitochondrial complexes I 
and II, considering that only gas-1, nuo-1, and mev-1 expressions were 
altered by 6-PPDQ exposure, RNAi of gas-1, nuo-1, and mev-1 was further 
carried out. The 10 μg/L for 6-PPDQ was selected in RNAi experiments 
due to significant mitochondrial dysfunction and decrease in mito-
chondrial complexes activities observed in nematodes under this con-
centration exposure. Following 6-PPDQ exposure, the relative OCR (6- 
PPDQ/control) in gas-1(RNAi), nuo-1(RNAi), and mev-1(RNAi) nema-
todes was higher than that in the wild-type (L4440) (Fig. 3A). Mean-
while, following being subjected to 6-PPDQ, the relative ATP content (6- 
PPDQ/control) in gas-1(RNAi), nuo-1(RNAi), and mev-1(RNAi) nema-
todes was lower in comparison to that in the wild-type (L4440) (Fig. 3B). 
Thus, the RNAi of gas-1, nuo-1, and mev-1 enhanced oxygen consump-
tion and inhibited ATP content after 6-PPDQ exposure. 

3.5. GAS-1 and MEV-1 regulated longevity in 6-PPDQ exposed 
nematodes by affecting insulin signaling pathway 

In C. elegans, alteration in mitochondrial complexes are associated 
with lifespan regulation [53]. RNAi of gas-1 and mev-1 significantly 
decreased the relative lifespan (6-PPDQ/control) of nematodes sub-
jected to 6-PPDQ treatment compared to that in the wild-type (L4440) 
(Figs. 4A and 4C). However, the relative lifespan (6-PPDQ/control) of 
nuo-1(RNAi) nematodes was comparable to that of the control nema-
todes (Fig. 4B). Therefore, 6-PPDQ toxicity on the lifespan of nematodes 
was mediated by changes in GAS-1 and MEV-1 expressions. 

We further investigated the interaction between GAS-1 and MEV-1 in 
controlling 6-PPDQ toxicity on lifespan. After the 6-PPDQ exposure, 
lifespans of mev-1(RNAi);gas-1(RNAi) nematodes were significantly 
shorter than those of gas-1(RNAi) and mev-1(RNAi) nematodes (Fig. 4D). 
Therefore, GAS-1 and MEV-1 acted in parallel to control 6-PPDQ toxicity 
on longevity. 

Insulin peptides (INS-6, INS-7, and DAF-28) played a key role in 
controlling 6-PPDQ toxicity on longevity [32]. In 6-PPDQ exposed 
nematodes, RNAi of gas-1 significantly increased the transcription levels 
of ins-6, ins-7, and daf-28 (Fig. 5A). In addition, the transcriptional levels 
of these three genes were dramatically upregulated by RNAi of mev-1 in 

Fig. 2. Effects of 6-PPDQ exposure on activities of mitochondrial complex I and II (A) and expressions of genes (gas-1, nuo-1, nuo-6, and mev-1) encoding components 
in mitochondrial complex I and II (B). Bars represent means ± SD. **P < 0.01 vs control. 
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C. elegans subjected to 6-PPDQ (Fig. 5B). Therefore, insulin peptide 
genes could be altered by RNAi of gas-1 and mev-1 in nematodes exposed 
to 6-PPDQ. 

Following 6-PPDQ exposure, the RNAi of ins-6, ins-7, and daf-28 
suppressed the susceptibility of gas-1(RNAi) nematodes to 6-PPDQ 
toxicity in reducing lifespan (Fig. 5C). Similarly, the lifespan of mev-1 
(RNAi) nematodes was prolonged when RNAi of these three genes was 
performed in C. elegans subjected to 6-PPDQ treatment (Fig. 5D). Thus, 
our findings suggest that GAS-1 and MEV-1 acted upstream of these 
three insulin peptides to control 6-PPDQ toxicity on lifespan. 

To further determine whether GAS-1 and MEV-1 regulated 6-PPDQ 
toxicity on lifespan by affecting the insulin signaling pathway, the ex-
pressions of genes in insulin signaling pathway in 6-PPDQ exposed gas-1 
(RNAi) and mev-1(RNAi) nematodes were examined. Following being 
subjected to 6-PPDQ exposure, the transcript levels of daf-2, age-1, akt-1, 
and akt-2 were increased, and the transcript level of daf-16 was 
decreased by RNAi of gas-1 and mev-1 (Figs. 6A and 6B). 

The genetic interaction between DAF-2 and GAS-1 or MEV-1 in 
controlling the effect of 6-PPDQ toxicity on lifespan was further exam-
ined. After 6-PPDQ exposure, the lifespans of daf-2(RNAi);gas-1(RNAi) 
and daf-2(RNAi);mev-1(RNAi) nematodes were comparable to those of 
daf-2(RNAi) nematodes (Figs. 6C and 6D). RNAi of daf-2 significantly 
suppressed the reduced lifespan of gas-1(RNAi) and mev-1(RNAi) nem-
atodes after exposure to 6-PPDQ (Figs. 6C and 6D). Therefore, GAS-1 
and MEV-1 acted upstream of DAF-2 to regulate 6-PPDQ toxicity in 
reducing lifespan. 

3.6. RNAi of gas-1 and mev-1 decreased expression of genes encoding 
mitochondrial Mn-SODs in 6-PPDQ exposed nematodes 

In C. elegans, manganese superoxide dismutases (Mn-SODs), 
including SOD-2 and SOD-3, are involved in the protection from mito-
chondrial ROS damage [54]. Our previous study demonstrated a 
decrease in sod-3 expression in daf-16(RNAi) nematodes exposed to 

Fig. 3. Effect of RNAi of gas-1, nuo-1, and mev-1 on oxygen consumption (A) and ATP content (B) in 6-PPDQ exposed nematodes. Exposure concentration of 6-PPDQ 
was 10 μg/L. Control, without 6-PPDQ exposure. L4440, empty vector. Bars represent means ± SD. **P < 0.01. 
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6-PPDQ [32]. The expression of sod-2 was also suppressed in daf-16 
(RNAi) nematodes exposed to 6-PPDQ (Fig. S2), suggesting the potential 
role of SOD-2 and SOD-3 as downstream of DAF-16 during the regula-
tion of 6-PPDQ toxicity. We also observed that, after 6-PPDQ exposure, 
the relative expressions of sod-2 (6-PPDQ/control) and sod-3 
(6-PPDQ/control) were significantly reduced by RNAi of gas-1 or mev-1 
(Figs. 7A and 7B). 

The relative median lifespans of sod-2(RNAi) (6-PPDQ/control) and 
sod-3(RNAi) (6-PPDQ/control) nematodes were lower than those of 
wild-type (L4440) nematodes (Fig. 7B), suggesting the susceptibility of 
sod-2(RNAi) and sod-3(RNAi) nematodes to 6-PPDQ toxicity in reducing 
lifespan. Following 6-PPDQ exposure, RNAi of sod-2 and sod-3 further 

caused severe stimulation of ROS generation compared to that in the 
wild-type(L4440) (Fig. 7C). 

4. Discussion 

6-PPDQ was identified as an emerging pollutant with high toxicity 
for aquatic animals [1]. Previous studies implied that 6-PPDQ toxicity 
was associated with mitochondrial damage [25,26,55]. However, the 
association between mitochondrial dysfunction and 6-PPDQ toxicity on 
longevity in organism remains unclear. In this study, we focused on the 
examination of mitochondrial function and activities of mitochondrial 
complex I/II following long-term exposure to 6-PPDQ at ERCs. In 

Fig. 4. Effect of RNAi of gas-1, nuo-1, and mev-1 on lifespan in 6-PPDQ exposed nematodes. (A) Effect of RNAi of gas-1 on lifespan in 6-PPDQ exposed nematodes. (B) 
Effect of RNAi of nuo-1 on lifespan in 6-PPDQ exposed nematodes. (C) Effect of RNAi of mev-1 on lifespan in 6-PPDQ exposed nematodes. (D) Genetic interaction 
between gas-1 and mev-1 in regulating lifespan in 6-PPDQ exposed nematodes. Exposure concentration of 6-PPDQ was 10 μg/L. Control, without 6-PPDQ exposure. 
L4440, empty vector. Bars represent means ± SD. **P < 0.01. 

X. Hua et al.                                                                                                                                                                                                                                     



Journal of Hazardous Materials 472 (2024) 134598

8

addition, the relationship between mitochondrial complex I/II subunits 
and insulin signaling pathway during the control of lifespan of 6-PPDQ 
exposed nematodes was further determined. 

4.1. 6-PPDQ at ERCs caused mitochondrial damage 

6-PPDQ was identified as an emerging pollutant with high toxicity 
for aquatic animals [1]. Current studies have shown 6-PPDQ toxicity 
with respect to various aspects [4,56,57]. The bioavailability of 6-PPDQ 
to organisms has also been observed [10]. Our previous study has 
demonstrated the accumulation of 6-PPDQ in C. elegans [32]. 6-PPDQ 
has also been detected in several organs in mice, including liver, kid-
neys, and lungs [9,14]. We detected remarkable accumulation of 
6-PPDQ in the mitochondria of C. elegans subjected to 6-PPDQ at 1 and 

10 μg/L (Fig. 1A). This observation suggests that exposure to 6-PPDQ 
potentially targets the mitochondria and causes mitochondrial damage. 

Previous studies have indicated that 6-PPDQ exposure increased the 
OCR in zebrafish and rainbow trout cells [35,36], which implies the 
induction of mitochondrial dysfunction. According to our observations, 
the OCR was considerably increased in nematodes exposed to 6-PPDQ at 
1 and 10 μg/L (Fig. 1C). Consistently, 6-PPDQ at 20 μg/L increased the 
OCR by 100% compared to that in the control in fish cells [36]. Addi-
tionally, the ATP content was considerably reduced after exposure to 
6-PPDQ at 1 and 10 μg/L (Fig. 1D). In the environment, 6-PPDQ can be 
found at doses varying from ng/L to μg/L [58,59]. In Seattle, 6-PPDQ 
was identified to have a peak concentration of 19 μg/L [1]. These 
findings suggest that 6-PPDQ at ERCs could cause the mitochondrial 
dysfunction. In addition, our data further suggested that the damage to 

Fig. 5. Genetic interaction between insulin peptides and GAS-1 or MEV-1 in regulating 6-PPDQ toxicity in reducing lifespan. (A) Effect of RNAi of gas-1 on ex-
pressions of ins-6, ins-7, and daf-28 in 6-PPDQ-exposed nematodes. Bars represent means ± SD. **P < 0.01 vs wild-type(L4440). (B) Effect of RNAi of mev-1 on 
expressions of ins-6, ins-7, and daf-28 in 6-PPDQ-exposed nematodes. Bars represent means ± SD. **P < 0.01 vs wild-type(L4440). (C) Genetic interaction between 
GAS-1 and INS-6, INS-7, or DAF-28 in controlling 6-PPDQ toxicity on lifespan. Bars represent means ± SD. **P < 0.01. (D) Genetic interaction between MEV-1 and 
INS-6, INS-7, or DAF-28 in controlling 6-PPDQ toxicity on lifespan. Exposure concentration of 6-PPDQ was 10 μg/L. L4440, empty vector. Bars represent means 
± SD. **P < 0.01. 
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mitochondrial function was attributed to the accumulation of 6-PPDQ in 
the mitochondria of the nematodes. Mitochondrial membrane potential 
is an important marker for healthy mitochondria [60]. Nevertheless, 
only 10 μg/L 6-PPDQ could decrease the MMP (Fig. 1B). Therefore, 
exposure to 6-PPDQ at ERCs may mainly damage mitochondrial func-
tion but not mitochondrial membrane permeability. 

4.2. Exposure to 6-PPDQ disrupted mitochondrial complexes I and II 

Mitochondrial respiratory chain complexes play key roles in electron 
transport chain and then modulate mitochondrial functions [61]. 
Complex I (NADH dehydrogenase) and Complex II (succinate dehydro-
genase) are the important components of mitochondrial complexes and 
the gatekeepers for initiating the electron transport chain [62]. In 
C. elegans, GAS-1, NUO-1, and NUO-6 are mitochondrial complex I 

subunits, and MEV-1 is a component on mitochondrial complex II [40]. 
In nematodes, exposure to 6-PPDQ at 1 and 10 μg/L decreased the ac-
tivity of complex I, accompanied by the decreased expression of gas-1 
and nuo-1 (Fig. 2). Meanwhile, the decreased activity of complex II 
together with the decreased mev-1 expression were observed in 
C. elegans exposed to 1 and 10 μg/L (Fig. 2). Our findings offer a crucial 
biochemical foundation for the toxic effects of 6-PPDQ exposure on 
mitochondrial function. Moreover, RNAi of gas-1, nuo-1 and mev-1 
strengthened 6-PPDQ toxicity on mitochondrial functions, as reflected 
by the alteration in the endpoints of the oxygen consumption rate and 
ATP content (Fig. 3). On one hand, this conformed previous conjecture 
that 6-PPDQ may affect the mitochondrial respiratory chain [36]. On the 
other hand, this further supported the association of alteration in com-
plexes I and II with induction of mitochondrial dysfunctions in nema-
todes exposed to 6-PPDQ. Therefore, exposure to 6-PPDQ potentially 

Fig. 6. Genetic interaction between insulin receptor DAD-2 and GAS-1 or MEV-1 in regulating 6-PPDQ toxicity in reducing lifespan. (A) Effect of RNAi of gas-1 on 
expressions of daf-2, age-1, akt-1, akt-2, and daf-16 in 6-PPDQ exposed nematodes. Bars represent means ± SD. **P < 0.01 vs wild-type(L4440). (B) Effect of RNAi of 
mev-1 on expressions of daf-2, age-1, akt-1, akt-2, and daf-16 in 6-PPDQ exposed nematodes. Bars represent means ± SD. **P < 0.01 vs wild-type(L4440). (C) Genetic 
interaction between DAF-2 and GAS-1 to control 6-PPDQ toxicity on lifespan. Bars represent means ± SD. **P < 0.01. (D) Genetic interaction between DAF-2 and 
MEV-1 to control 6-PPDQ toxicity on lifespan. Exposure concentration of 6-PPDQ was 10 μg/L. L4440, empty vector. Bars represent means ± SD. **P < 0.01. 
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causes defects in mitochondrial complexes I and II and induces mito-
chondrial dysfunction. Emerging evidence reveals that mitochondrial 
complex defects can aggravate mitochondrial dysfunction and induce 
mitochondrial diseases, such as Parkinson’s disease, Alzheimer’s dis-
ease, and diabetes mellitus [63]. 

Mitochondrial dysfunction plays a crucial role in regulating 
longevity [64]. In C. elegans, there is increasing evidence that the 
mitochondrial complexes are associated with alteration of lifespan [53]. 
For example, the lifespan of gas-1 mutant was lower than that of 
wild-type nematodes [65]. In addition, a shorter lifespan was also 
observed in mev-1 mutant nematodes [66]. Following exposure, RNAi of 
gas-1 and mev-1 rendered nematodes vulnerable to 6-PPDQ toxicity in 
terms of reducing lifespan (Figs. 4A and 4C), demonstrating that the 
decrease in expressions of gas-1 and mev-1 mediated the effect of 6-PPDQ 
toxicity on lifespan. Additionally, double RNAi of gas-1 and mev-1 
caused a more severe reduction in lifespan than in single RNAi of gas-1 
or mev-1 in 6-PPDQ exposed nematodes (Fig. 4D), suggesting that GAS-1 
and MEV-1 and their corresponding electron transfer chains functioned 
in parallel to regulate 6-PPDQ toxicity on lifespan. Nevertheless, in 
6-PPDQ exposed nematodes, we found that RNAi of nuo-1 did not affect 
lifespan (Fig. 4B). In complex I, the altered NUO-1 levels may be 

associated with other unknown effects (s) of 6-PPDQ on nematodes. 

4.3. Disrupted mitochondrial complex I and II was associated with 
lifespan reduction in 6-PPDQ exposed nematodes 

To determine how GAS-1 and MEV-1 regulate the effect of 6-PPDQ 
toxicity on lifespan, we identified insulin peptides as downstream tar-
gets in C. elegans. The insulin peptides INS-6, INS-7, and DAF-28 have 
been implicated in controlling the effects of 6-PPDQ toxicity on lifespan 
[32]. Following 6-PPDQ exposure, RNAi of gas-1 and mev-1 increased 
the expression of ins-6, ins-7, and daf-28 (Figs. 5A and 5B). In addition, 
the susceptibility of gas-1(RNAi) and mev-1(RNAi) nematodes to 6-PPDQ 
toxicity in reducing lifespan was suppressed by RNAi targeting these 
three genes (Figs. 5C and 5D). Therefore, GAS-1 and MEV-1 jointly 
inhibited the expression and function of these three insulin peptides to 
regulate the 6-PPDQ toxicity on lifespan. In other words, GAS-1 and 
MEV-1 could act upstream of these three insulin peptides to control 
6-PPDQ toxicity in reducing lifespan. Nevertheless, it remains unclear 
whether GAS-1 and MEV-1 can regulate 6-PPDQ toxicity by targeting 
specific targets. 

In the insulin pathway, in addition to the insulin peptide genes, the 

Fig. 7. Effect of RNAi of gas-1 and mev-1 on expressions of genes encoding mitochondrial Mn-SODs in 6-PPDQ exposed nematodes. (A) Effect of RNAi of gas-1 or mev- 
1 on expressions of sod-2 and sod-3 in 6-PPDQ exposed nematodes. (B) Effect of RNAi of sod-2 or sod-3 on lifespan in 6-PPDQ exposed nematodes. (C) Effect of RNAi of 
sod-2 or sod-3 on ROS production in 6-PPDQ exposed nematodes. Control, without 6-PPDQ exposure. Exposure concentration of 6-PPDQ was 10 μg/L. L4440, empty 
vector. Bars represent means ± SD. **P < 0.01. 
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expression of the insulin receptor gene daf-2 and its downstream kinase 
genes (age-1, akt-1, and akt-2) was also increased, and the FOXO tran-
scriptional factor gene daf-16 was decreased by RNAi of gas-1 and mev-1 
in nematodes exposed to 6-PPDQ (Figs. 6A and 6B). In addition, the 
toxicity of 6-PPDQ on the lifespan of gas-1(RNAi) and mev-1(RNAi) 
nematodes was further reduced by RNAi of daf-2 (Figs. 6C and 6D). The 
functions of DAF-2, AGE-1, AKT-1, AKT-2, and DAF-16 in regulating 6- 
PPDQ toxicity in reducing lifespan have been previously observed [32]. 
These observations further confirmed the role of the insulin signaling 
pathway as a downstream molecular event of GAS-1 and MEV-1 in 
regulating 6-PPDQ toxicity in nematodes. 

In C. elegans, the alterations of mitochondrial complexes are associ-
ated with both longevity and oxidative stress [38]. Mutants of gas-1 and 
mev-1 are reported to be sensitive to oxidative stress [66,67]. The sod-2 
and sod-3 encoding Mn-SODs were identified as downstream targeted 
genes of DAF-16 during the control of 6-PPDQ toxicity in reducing 
lifespan (Figs. S2 and 7B) [32]. Meanwhile, the relative expressions 
(6-PPDQ/control) of sod-2 and sod-3 were also observed in gas-1(RNAi) 
and mev-1(RNAi) nematodes exposed to 6-PPDQ (Fig. 7A). In addition, 
RNAi sod-2 and sod-3 increased the susceptibility of 6-PPDQ toxicity to 
induce ROS production (Fig. 7C). These results indicate that, under 
normal conditions, GAS-1 and MEV-1 can inhibit ROS scavenging by 
affecting the upstream insulin signaling pathway and activating 
Mn-SODs in the mitochondria. However, under 6-PPDQ exposure con-
ditions, the decrease in GAS-1 and MEV-1 caused the inhibition of 
Mn-SODs and an increase in ROS production, which contributed to the 
reduction in lifespan. 

5. Conclusions 

Together, we observed the damage caused by 6-PPDQ at ERCs (1 and 
10 μg/L) on mitochondrial functions reflected by altered oxygen con-
sumption and ATP content in nematodes. These disrupted mitochondrial 
functions were associated with decreased activities of complexes I and II 
and decreased expression of gas-1, nuo-1, and mev-1 encoding compo-
nents of complexes I and II. Meanwhile, the decreased expression of gas- 
1 and mev-1 mediated 6-PPDQ toxicity in reducing lifespan. During the 
control of 6-PPDQ toxicity in reducing lifespan, GAS-1 and MEV-1 
inhibited the expression of insulin peptides (INS-6, INS-7, and DAF- 
28) and insulin receptor DAF-2 and activated the FOXO transcrip-
tional factor DAF-16 and its targets SOD-2 and SOD-3 to suppress the 
induction of oxidative stress. These results suggest the potential of 6- 
PPDQ in damaging mitochondrial functions and the activities of com-
plexes I and II, which was associated with the induction of 6-PPDQ 
toxicity on lifespan by affecting the insulin signaling pathway in or-
ganisms. Nevertheless, in the current study, we only examined the effect 
of 6-PPDQ on complex I and II and their association with lifespan 
reduction. The effect of 6-PPDQ exposure at ERCs on other mitochon-
drial complexes and their association with induction of 6-PPDQ toxicity 
are suggested to be further determined. 

Environmental implication 

The 6-PPD quinone (6-PPDQ) has been widely distributed in the 
environment and showed bioavailability to environmental organisms. In 
Caenorhabditis elegans, 6-PPDQ at environmentally relevant concentra-
tions (ERCs) could result in mitochondrial dysfunction, which was 
associated with altered activities and expressions of genes encoding 
components in complex I and II. Moreover, components on complex I 
and II regulated 6-PPDQ toxicity in reducing lifespan by inhibiting in-
sulin peptides and receptor DAF-2. Our results suggested possibility of 6- 
PPDQ at ERCs in causing damage on mitochondrial complexes and in 
reducing lifespan in organisms. 
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[60] Berry, B.J., Vodičková, A., Müller-Eigner, A., Meng, C., Ludwig, C., Kaeberlein, M., 
et al., 2023. Optogenetic rejuvenation of mitochondrial membrane potential 
extends C. elegans lifespan. Nat Aging 3, 157–161. 

[61] van der Bliek, A.M., Sedensky, M.M., Morgan, P.G., 2017. Cell biology of the 
mitochondrion. Genetics 207, 843–871. 
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