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A B S T R A C T   

Creating a biomimetic in vitro lung model to recapitulate the infection and inflammatory reactions has been an 
important but challenging task for biomedical researchers. The 2D based cell culture models – culturing of lung 
epithelium – have long existed but lack multiple key physiological conditions, such as the involvement of 
different types of immune cells and the creation of connected lung models to study viral or bacterial infection 
between different individuals. Pioneers in organ-on-a-chip research have developed lung alveoli-on-a-chip and 
connected two lung chips with direct tubing and flow. Although this model provides a powerful tool for lung 
alveolar disease modeling, it still lacks interactions among immune cells, such as macrophages and monocytes, 
and the mimic of air flow and aerosol transmission between lung-chips is missing. Here, we report the devel-
opment of an improved human lung physiological system (Lung-MPS) with both alveolar and pulmonary 
bronchial chambers that permits the integration of multiple immune cells into the system. We observed amplified 
inflammatory signals through the dynamic interactions among macrophages, epithelium, endothelium, and 
circulating monocytes. Furthermore, an integrated microdroplet/aerosol transmission system was fabricated and 
employed to study the propagation of pseudovirus particles containing microdroplets in integrated Lung-MPSs. 
Finally, a deep-learning algorithm was developed to characterize the activation of cells in this Lung-MPS. This 
Lung-MPS could provide an improved and more biomimetic sensory system for the study of COVID-19 and other 
high-risk infectious lung diseases.   

1. Introduction 

Two-dimensional cell culture models and animal models have been 
developed for studies of airborne infectious diseases, such as COVID-19 
and SARS (Bao et al., 2020; Chan et al., 2020; Yu et al., 2020). 2D cell 
culture technology has been used for a long time in the field of life 
sciences for the low cost, convenient preparation of seed cells, and full 

details of preliminary exploration. However, the 2D cell culture models 
are oversimplified in terms of cell-cell and cell-matrix interactions with 
the result that their application to understanding human lung infections 
has been limited. On the other hand, animal models, as the most widely 
used 3D models, are limited because of structural differences from the 
human lung and the manual labor involved in the preparation of lung 
samples needed to characterize the changes in lung structure caused by 

* Corresponding author. 
** Corresponding author. 
*** Corresponding author. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, SiPaiLou#2, 

Nanjing, Jiangsu, 210096, China. 
E-mail addresses: chaojie@seu.edu.cn (J. Chao), yppu@seu.edu.cn (Y. Pu), gu@seu.edu.cn (Z. Gu).   

1 these authors contributed equally in this work. 

Contents lists available at ScienceDirect 

Biosensors and Bioelectronics 

journal homepage: www.elsevier.com/locate/bios 

https://doi.org/10.1016/j.bios.2022.114772 
Received 17 June 2022; Received in revised form 7 September 2022; Accepted 28 September 2022   

mailto:chaojie@seu.edu.cn
mailto:yppu@seu.edu.cn
mailto:gu@seu.edu.cn
www.sciencedirect.com/science/journal/09565663
https://www.elsevier.com/locate/bios
https://doi.org/10.1016/j.bios.2022.114772
https://doi.org/10.1016/j.bios.2022.114772
https://doi.org/10.1016/j.bios.2022.114772
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bios.2022.114772&domain=pdf


Biosensors and Bioelectronics 219 (2023) 114772

2

infection. Moreover, this process can be dangerous if the animals exhibit 
serious infectious disease. Human tissue-based models have also been 
established. Chu et al. reported that human lung tissues harvested from 
surgery of lung cancer patients were used to study virus proliferation 
and inflammatory cytokine expression in lung tissues(Chu et al., 2020). 
Unfortunately, these tissues did not survive long in vitro, and during 
surgery and sample preparation, immune cells inside the lung tissue 
were largely lost. 

In human organs-on-a-chip (OOC) systems or human micro-
physiological systems (hMPSs), functional miniature human organs are 
constructed using microfabrication and tissue-engineering techniques 
(Zheng et al., 2016). hMPSs create a biomimetic microenvironment for 
the continuous culture of these miniature organs with optimized tissue 
structure and cell composition similar to that in the corresponding 
human organs (Sunghee Estelle Park, 2019). OOCs and MPSs have now 
been commonly used for evaluating the effectiveness and toxicity of 
drugs to reduce the usage of animals (Huh et al., 2012b; Low et al., 2021; 
Low and Tagle, 2017; Mehta et al., 2012). In 2010, the Ingber lab in the 
Weiss Institute created a lung OOC model to simulate the alveoli 
structure and its contraction and relaxation (Huh et al., 2010). Recent 
applications of this model include the detection of bacteria, chemicals, 
nanoparticles and other harmful materials (Huh et al., 2012a; Si et al. 
2021a, 2021b). Our group also developed multiple MPSs, including an 
inverse opal-like hydrogel-based lung MPS, and utilized a deep 
learning-based model for tissues in organs-on-a-chip analysis(Chen 
et al., 2021; Huang et al., 2021; Yang et al., 2021; Zheng et al., 2016). 

SARS-CoV-2, the virus that causes COVID-19, enters cells by 
attaching to ACE2 receptors followed by endocytosis. ACE2 receptors 
are widely expressed in various cells of the human body, although their 
expression in alveolar epithelial type II cells is higher than that in other 
organs of the human body, including the intestinal tract, liver and 
vascular endothelia (Jing et al., 2020; Pal and Bhansali, 2020; Pirola and 
Sookoian, 2020; South et al., 2020). The lethality of COVID-19 is higher 
than that of common influenza, and the cause of death in infected in-
dividuals is associated with cytokine storms (Chan et al., 2020; Chu 
et al., 2020). Autopsy results showed that COVID-19 patients produced 
large amounts of mucus in the lung bronchi and had damaged alveolar 
cells with mucus on their surfaces; it was suspected that the mucus was 
produced by the bronchial epithelia and infiltrated into the alveoli 
(Chan et al., 2020; Chu et al., 2020). Therefore, to construct a 
lung-on-a-chip (LOC) model for COVID-19, a chip containing cells 
expressing ACE2 receptors is needed, and not only an alveolar structure 
but also a lung bronchus structure needs to be constructed. To simulate 
the inflammatory cascade that occurs inside of the lungs of COVID-19 
patients, immune cells to simulate resident macrophages existing in 
alveolar interstices and circulating leukocytes should also be introduced 
(Chu et al., 2020). 

In this study, we constructed a human lung physiological system 
(Lung-MPS), consisting of bronchial components and alveolar compo-
nents, resident macrophages, and circulating monocytes. The chip ma-
terial, flow control, pumps option are important in physiological systems 
like the MPS(Danku et al., 2022), in consideration of the biocompati-
bility and drug absorption, we choose poly (methyl methacrylate) 
(PMMA) as the raw chip material to fit a peristaltic pump system. The 
integration of multiple immune cells in the lung MPS has enabled us to 
monitor the amplification of inflammatory signals in the system. A 
deep-learning-based recognition module was included in this system to 
evaluate and classify the inflammation-induced changes in epithelium 
and macrophage morphology. We also constructed a fully automated 
spreading system that was capable of simulating droplet spreading in a 
typical human-human infection process. Liquid supply, culture devices, 
and other components were all integrated into a system to conduct viral 
studies with minimal risks. Using this setup, we investigated the 
spreading of spike protein and pseudoviruses in the LOC model and 
explored measures to reduce the spread of these pathogens. 

2. Materials and Methods 

2.1. Cell culture 

The lung epithelial cell lines, including BEAS-2B,NCI-H441,A549, 
Calu-3,the human monocytic cell line THP-1,the human endothelial 
cell line HUVEC,were all purchased from the Global Bioresource Center 
(ATCC) and cultured according cell-culturing protocols. The details 
were shown in supporting information (Methods.S1). 

2.2. Design and fabrication of Lung-MPS micro-device 

The Lung-MPS device fabricated by CNC technology contains a poly 
(methyl methacrylate)(PMMA) chip body and a plug-in connector. The 
PMMA chip body is comprised of four PMMA layers and a porous 
membrane layer. The four PMMA layers consist of an upper connection 
layer, an upper cell culture layer, a lower cell culture layer and a lower 
seal layer. The upper connection layer is used for plug-in connector 
connection and it has two pores for adding cells into the chip. Both the 
upper and lower cell culture layer contain one or two (to simulate pul-
monary bronchi and alveoli individually) cell culture unit and micro-
channels. The microchannels are 0.4 mm high and 1 mm wide. The sizes 
of the cell culture units are 7 mm long, 2 mm wide and 0.4 mm high. The 
upper cell culture unit and lower cell culture unit are separated by a 
track-etched polyethylene terephthalate (PET) membrane (ipCellCul-
ture, it4ip, Belgium) containing 0.45 μm diameter circular pores. All the 
PMMA layers were cleaned using ethyl alcohol and deionized water. 
Then the PMMA layers and the porous membrane were combined into 
an integrated chip body with biocompatible double-side adhesive as is 
shown in Fig. 1A I. The upper two PMMA layers were first combined 
with a medical grade pressure-sensitive adhesive (ARcare 90445Q, Ad-
hesives Research) into a whole upper unit. The lower two PMMA layers 
were then combined with the same medical grade pressure-sensitive 
adhesive into a whole lower unit. The upper and lower edge surface of 
the porous membrane were combined to the upper unit and the lower 
unit with the grade pressure-sensitive adhesive individually. A poly-
tetrafluoroethylene (PTFE) membrane with 0.2 mm pore size was cut 
into proper size and bonded to the chip using double-sided pressure 
sensitive adhesive for bubble removal. The User-friendly plug-in 
connector was inspired from video graphics array (VGA) interface. The 
operation of the connector is convenient and simple. It just needs to 
insert the connector into the chip and tightened through the two screws 
on the side of the PMMA base. All the fluids loading and perfusion were 
controlled by a homemade fluid control system which was driven by 
peristaltic pumps. The detail was referenced in Supplementary Fig. S5, 
the holder could mostly accommodate 4 chips which could be perfused 
by 2 pumps (6-channel Pump, Takasago Fluidic Systems), and the 
controller was designed to set perfusion speed, time of each channel. The 
flow speed could adjust belong 1 μL/min to 1000 μL/min which is 
enough to obtain an appropriate fluid flow to mimic the microenvi-
ronment but without a harmful shear stress. 

2.3. Lung-MPS micro-device simulates the model of disease transmission 

We used two sets of chips in Lung-MPS – one set represents upstream 
“infectious” lung-chip and one set represents downstream normal lung 
chip, and a nebulizer to mimic the disease transmission. The system is 
shown in Fig. 4. The upstream chip simulates an infectious person, while 
the downstream chip simulates a normal person. Nebulizer receives 
virus from the infected chip and transmits the virus to the normal chip to 
simulate a person-to-person process. The virus in the upper cell culture 
unit of infectious chip is conveyed out of the chip by a peristaltic pump 
and flows into a nebulizer, in which it is nebulized into spray. A surgical 
mask insert was added to examine if the mask could prevent virus 
transmission. 
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Fig. 1. Design and Construction of a Lung Microphysiological System. A) The appearance of the Lung-MPS chip. (I) The overall view of the Lung-MPS chip (1) the top 
layer of the chip; (2) the middle layer containing channels and sub-chambers for epithelium (bronchial and alveolar) and endothelium culture; (3) the bottom layer of 
the chip; (4) the VGA-like microfluidic connector for perfusion; (5) bubble trap and bubble filter structure. (II) Top view illustration of the flow in Lung-MPS chip. 
(III) Photograph of actual Lung-MPS chip. 1) green and red indicate the flow direction in upper and lower chambers or channels individually. 2) the appearance of the 
Lung-MPS chip with TEER detection electrodes. (V) The perfusion system has a pumping head that can simultaneously control up to four LOC. (IV) Schematic of the 
perfusion system: i to iv are the lung-chip, connectors and tubing, the peristaltic pump and pump head and the scaffold for the flow system, respectively.B) A typical 
timeline for construction of the Lung-MPS. C) The epithelium and endothelium morphological analysis. (I) Schematic illustration of lung epithelium(BEAS2b) and 
endothelium(HUVEC) on the Transwell-like membrane in the Lung-MPS. (II) Cryosectioning and H&E staining of Lung-MPSs showing the presence of epithelium and 
endothelium on both sides of the membrane at lower (top) and higher (bottom) magnification(Day 5). (III) Scanning electron microscopy (SEM) image showing 
endothelium and epithelium growth on the membrane(Day 5). (IV) Live/dead staining of the endothelium and epithelium in the chip chambers, showing the high 
viability of cells in the Lung-MPS(Day 7). 
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2.4. Generation of pulmonary bronchi and alveoli 

The culture process is comprised of four main phases: the culture of 
human pulmonary bronchial epithelial cells and alveolar epithelial cells, 
the submerged culture of human endothelial cells, the subsequent cul-
ture at the air-liquid interface (ALI), and an additional co-culture of 
macrophages with epithelial cells. The details were shown in supporting 
information (Methods.S2). 

2.5. Inflammatory stimulation 

The upper chambers of the Lung-MPSs were treated with 10 μg/mL 
LPS in 50:50 mixtures of complete DMEM and RPMI-1640 medium 
flowing for 24 h. Meanwhile, the lower chambers were flowed with 
control medium or THP-1 cells in 50:50 mixtures of complete DMEM and 
RPMI-1640 medium. After stimulation, the effluent of the upper 
chambers was collected for chemokines and cytokines (IL-6, TNF-α and 
MCP-1) detection using ELISA kits (Proteintech, USA), and the devices 
were reserved for further characterization. 

2.6. SARS-CoV2 spike protein and pseudo-virus infection 

The details of SARS-CoV2 spike protein incubation and pseudovirus 
infection were shown in supporting information (Methods.S3). 

2.7. Inflammatory response 

2.7.1. Monocyte adhesion 
The endothelial layer was live-stained for 30min at 37◦C using 

Hoechst 33342. THP-1 cells were labeled with CMTPX (1 μM) for 1 h 
before being used. After microfluidic device was treated with LPS (10 
μg/ml) for 24 h, the monocytes (5 × 105 cell/mL) were perfused in 
microfluidic device at a speed of 0.1 mL/min for 30mintutes. The movies 
were taken using time-lapse function of OCRA-Spark CMOS (Hama-
matsu, Japan). The micrographs of four or five random areas were taken 
using an IX-83 microscope and cell counting quantification was carried 
out by counting attached monocyte using ImageJ software. For mono-
cyte adhesion assays, the epithelial cells were seeded in the lower 
chambers while the endothelial cells were cultured in the upper cham-
bers to avoid the affection of gravity. 

2.8. Epithelium and endothelium morphological analysis 

2.8.1. Cell viability 
Cell viability was carried out by live/dead cell staining (Thermo 

Fisher Scientific, USA). The microfluidic device was slightly washed 
three times with DPBS, then incubated with 60ul dye at 37◦C for 30 min 
and observed on an IX-83 microscope. 

2.8.2. Histological and immunofluorescence staining 
The culture membranes of the Lung-MPSs were carefully separated 

from the devices by cutting along the equivalents’ edge with a scalpel, 
fixed in 10% neutral buffered formalin and embedded into paraffin. De- 
paraffinized sections of 5 μm were transferred onto slides for 
hematoxylin-eosin (HE) staining. The bright-field images of HE staining 
were acquired for general analysis of the pulmonary equivalents’ 
morphological architecture. Caseviewer software was used to measure 
histological features.For immunofluorescence staining, the details were 
shown in supporting information (Methods.S4). 

2.8.3. Scanning electron microscopy 
For micromorphology observation, the excised membranes of the 

Lung-MPSs were fixed in cold 4% paraformaldehyde for 2h for scanning 
electron microscopy (SEM) detection. Before observation, the mem-
branes were rinsed in PBS, then dehydrated through gradient ethanol 
solutions from 25 to 100% and incubated for up to 10 min in each 

interval. Samples were air-dried overnight in a desiccator at room 
temperature, mounted using conductive adhesive tabs and coated with a 
thin layer of gold under vacuum for scanning electron microscopic im-
aging with a Phenom Pro scanning electron microscope (Phenom pro, 
Netherlands). 

2.9. Barrier function assays 

2.9.1. Transepithelial electrical resistance (TEER) assays 
The electrical resistance of these Lung-MPSs in different treatment 

conditions were measured using EVOM2 (World Precision Instruments, 
USA) to investigate the barrier function. For immunofluorescence 
staining, the details were shown in supporting information (Methods. 
S5). 

2.9.2. Paracellular permeation 
To examine the permeability, the Lung-MPSs were perfused with 

607 Da Cascade blue solution (50 μM), and detected at 4 h. For immu-
nofluorescence staining, the details were shown in supporting infor-
mation (Methods.S5). 

2.10. Deep-learning algorithm for inflammation classification 

2.10.1. Setup 
Firstly, we captured 200 bright field cell images in different cate-

gories (LPS and Control), respectively. Then, we splited the whole 
dataset into train and test set with a ratio of 7:3. We used train set to fine- 
tune the pretrained VGG-19 network and evaluated inflammation clas-
sification accuracy on test set. 

2.10.2. Image pre-processing and patch extraction 
Each brightfield image was converted into a gray-scale image to 

avoid the impact of hue and saturation and minimize the effects of 
different imaging conditions. The image was then normalized to a 
standardized intensity ranging [0,1]. Next, a 224× 224 sliding-window 
with an overlap of 25% was used to extract patches from gray-scale 
images. After patch extraction, we got 32,000 image patches, which is 
basically enough for network fine-tuning. At training stage, we used 
Torchvision Library(Marcel and Rodriguez, 2010) to augment the train 
set by randomly horizontally and vertically flipping and randomly 
rotation with a probability of 0.5, 0.5 and 0.25, respectively. 

2.10.3. VGG-19 architecture 
We used VGG-19 Network to obtain different scale features through 

composed convolution groups, and then used fully connected layers as a 
classifier to distinguish different categories. VGG19 is the name of a 
neural network that was proposed by Visual Geometry Group in Oxford 
University in the paper “Very Deep Convolutional Networks for Large- 
Scale Image Recognition (ICLR, 2015)”(Simonyan and Zisserman, 
2015), when a series of network architecture contains VGG11, VGG13, 
VGG16, VGG19, which are named by the number of weight layers in 
their model. These networks aim to solve the image classification task 
using artificial intelligence. In our paper, we choose the VGG19 archi-
tecture for classification. In the VGG-19 model, we used a combination 
of convolution blocks with different feature channels and fully con-
nected blocks, to implement an end-to-end method for accurate image 
classification. The convolution block consists of 16 convolutional layers 
and 4 max-pooling layers, with the convolutional kernel set as 3× 3. The 
fully connected block consists of 3 fully connected layers. The result of 
the network input of 224× 224 corresponds to an output of 1× 2, which 
is the probability of a certain category. 

2.10.3.1. Transfer learning on bright field image dataset. Due to the small 
number of images in our bright field image dataset, the proposed VGG- 
19 model was pre-trained on ImageNet to optimize parameters in 
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convolution blocks for feature extraction. By pre-training the model on 
ImageNet, more useful high-level features can be attracted for image 
classification. Then, the parameters in convolution blocks are frozen and 
the network is retrained on our dataset to optimize the parameters in 
fully connected layers. We also trained VGG-19 model only using our 
bright field image dataset from scractch, while the prediction accuracy is 
significantly lower than that of using pretrained model. 

2.10.3.2. Inflammation classification. Acquired bright field cell images 
in different categories (LPS and Control) were processed using the 
network model to obtain the classification results. The computer hard-
ware is Core i7-9700K @ 3.60 GHz CPU on Z390 UD main board with 32 
GB(DDR4,2666 MHz) RAM, 860 EVO 500 GB SSD Hard Disk, Nvidia 
GeForce RTX 2080 Ti (11 GB) Graphics Card, and DEL40E8 DELL 
U2417H monitor. VGG-19 Algorithm took less than 0.5s to classify the 
label of a single image (Image resolution at 1200× 980× 3, size ~300 
KB). 

2.11. Statistical analysis 

Data was expressed as mean ± SEM. Statistically significant differ-
ence was determined by either Student t-tests or one-way ANOVA and 
Tukey’s post hoc test, statistical significance was set at p < 0.05. 

3. Results 

3.1. Construction of a lung-on-a-chip system 

To precisely simulate the lung, we constructed a lung micro-
physiological system with an alveolar chamber and a bronchial cham-
ber, as shown in Fig. 1A. Each chamber was divided into two separate 
spaces by a porous membrane; the upper chamber was used for culturing 
bronchial or pulmonary epithelial cells, and the lower chamber was used 
for culturing pulmonary vascular endothelial cells. Loading ports facil-
itated communication between the upper and lower chambers and can 
be used for injection of extracellular matrices (ECM), loading and 
reloading of cells, adding drugs or inhibitors, and sampling the medium 
for further analysis or measurement of electrical impedance in the sys-
tem. We designed a multichannel connector (Fig. 1A I4) for perfusion of 
the upper and lower chambers independently. We manufactured a kit 
with all required reagents and equipment (Supplementary Fig. S1), 
including culture medium, detection reagents, chip bodies, tubing, and 
other accessories. Operating procedures for the addition of ECM, cells, 
and subsequent culture and perfusion are described in the Materials and 
Methods. In brief, a bronchi structure was constructed using bronchial 
epithelial cells, Beas-2B; the alveolar epithelial structure was con-
structed using type II pneumocyte-like epithelial cells, NCI-H441, and 
the vessel chambers consisted of human umbilical vein endothelial cells, 
HUVECs. H&E staining, fluorescent-based live/dead staining and scan-
ning electron microscopy (SEM) images demonstrated the formation of a 
dense epithelial layer (Fig. 1C I-IV). After one week of cell culture both 
the epithelial and endothelial layers maintained high viability (>95%). 

3.2. Simulation of the inflammatory cascade reaction in the in vitro lung- 
on-a-chip system 

The inflammatory cascade reaction is generally used to describe the 
amplification of an inflammatory reaction. For example, macrophages 
can “sense” immunogenic substances, such as PAMPs (pathogen-asso-
ciated molecular patterns), or DAMPs (damage-associated molecular 
patterns)(Denning et al., 2019; Takeuchi and Akira, 2010), and secrete 
inflammatory cytokines, thereby inducing activation of endothelial cells 
and triggering adhesion and aggregation of many monocytes on the 
endothelial layer (Supplementary Fig. S2A). To introduce the key 
component in inflammatory reaction, we built a perfusion system to 

deploy residential macrophages and later the circulating monocytes into 
the lung-MPS. The perfusion system is shown schematically in Fig. 1A IV 
and the chips connected in the perfusion system are shown in Fig. 1A V. 

We first introduced macrophages into the system on Day 6. The ratio 
of macrophages to epithelial cells is 1:10, similar to that found in 
humans(Stone et al., 1992). Macrophages adhered to the surfaces of the 
epithelial cells were imaged by H&E staining or SEM (Fig. 2A). The 
alveolar epithelia, endothelia and macrophages in the model system 
have a barrier function as shown by trans-epithelial electrical resistance 
(TEER) measurements of the components alone and of the composite 
structure on Day 8 after construction of the system (Supplementary 
Fig. S3). The TEER value of the combined epithelial and endothelial 
layers was greater than that of either layer alone. Adding macrophages 
to the induced model reduced the TEER value, suggesting a potential 
effect of immune cells on lung permeability. To study the inflammatory 
cascade reaction, we also introduced circulating monocytes into the 
lung-MPS system containing the macrophages. We added 10 μg/ml LPS 
to activate macrophages in the chip. By continuous monitoring of 
flowing monocytes in the chip with the pumping system, a great number 
of leukocytes adhering to the endothelial layer were observed after LPS 
stimulation (Fig. 2B–E, Supplementary Movie S1). 

Supplementary data related to this article can be found at https://do 
i.org/10.1016/j.bios.2022.114772. 

With circulating monocytes, the expression of inflammatory factors, 
including TNF-α, IL6 and MCP1, increased over 8-fold compared with 
systems w/o circulating monocytes, indicating an enhanced inflamma-
tory response with the perfusion system (Fig. 3A, I-III). Concomitantly, 
the inflammatory reaction caused more significant decreases in the 
TEER values with the circulation of monocytes (Fig. 3B), indicating that 
the tri-culture of macrophages and monocytes with either bronchial or 
alveolar epithelial cells can aggravate inflammation. An increase in 
mucus secretion was also observed in alveolar chambers stimulated with 
LPS (Supplementary Fig. S4). 

3.3. Lung microphysiological system model for droplet spreading 
simulation 

Droplet spreading through speaking, breathing, and coughing are 
typical spreading modes for airborne diseases. To construct an in vitro 
model capable of simulating droplet spreading, we designed and con-
structed an integrated system containing upstream lung-MPSs, nebu-
lizers, protective masks, downstream lung-MPSs and other accessories, 
including pumps and controllers (Fig. 4A). The left arm of the system is 
the upstream lung-MPSs, which contains 4 chips, a pumping subsystem 
and a controller. Using culture fluid in the alveolar epithelia chamber, a 
defined volume (500 μl) was automated pumped into a nebulizer (Ma-
terials and Methods) to generate fluid droplets and/or aerosols with an 
average size of 3.9 ± 25%, and >65% of particles were smaller than 5 
μm (Materials and Methods). The droplets were then guided and har-
vested, followed by pumping into downstream Lung-MPSs. The work-
flow (time and speed) of each pump was programmed, and the operation 
was fully automated (Fig. 4B, Supplementary Fig. S5). 

To detect droplet generation and measure spreading efficiency, we 
used food colorants and fluorescent microbeads to visualize the diffusion 
of small molecules or substances from the upstream Lung-MPSs to the 
downstream Lung-MPSs (Fig. 5A). The droplet generator was operated 
for 20 s and the medium in upstream Lung-MPSs that contained pig-
ments at a concentration of 5 mg/mL formed droplets and entered the 
medium in downstream Lung-MPSs diluted ~20-fold, as determined by 
a colorimetric measurement. This experiment was repeated using 1 μm 
fluorescent microbeads with the result that the microbeads were 
approximately 16-fold diluted when they arrived downstream. 

To test the spreading model and its blockage with protective mea-
sures, we also examined the influence of protection equipment (surgical 
masks) on the spreading of the specimen. The masked group reduced the 
number of both food colorants and microbeads to <5%, suggesting a 
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preventive effect of protective masks on the spreading of particles, 
compared with a nonmask group (Fig. 5A-I and II). 

3.4. Application of Lung-MPS for the study of SARS-CoV-2 spike protein 
and pseudovirus infection 

We explored whether our Lung-MPS system could be useful in the 
study of lung-related infectious diseases using SARS-CoV-2 mimetic 
spike protein or SARS-CoV-2 pseudovirus (Materials and Methods). All 
virus experiments were carried out in a BSL-2 laboratory. Briefly, the 
epithelium chamber in air-liquid culture was filled with medium for 10 
min before spike protein attachment or the pseudovirus infection 
experiment, and spike protein (250 ng/mL) or pseudoviruses (107IU/ 
ml) were added to the upstream buffer tube and flowed through the 
epithelium chamber of the upstream Lung-MPSs for 24 h. The solution in 
the buffer tube was also pumped into the upstream reservoir before the 
nebulizer and atomized. The atomized mists with or without mask 

blockage were harvested by the downstream reservoir and then pumped 
into downstream Lung-MPSs. The epithelium chamber in both upstream 
and downstream Lung-MPSs was washed and kept in air-liquid culture 
for another 24 h before fixation with 4% paraformaldehyde. Immuno-
cytochemical staining was performed for analysis of the spike protein 
experiment. Colocalization of ACE2 and spike protein was observed in 
over 70% in BEAS-2B and NCI-H441 cells (Fig. 5B, Supplementary 
Fig. S6). For the virus experiment, the percentage of cells transduced 
(Fig. 5C) with pseudoviruses was monitored for GFP expression in the 
cytoplasm. We observed the transportation of pseudoviruses from the 
upstream Lung-MPSs to the downstream Lung-MPSs. The mask blocked 
almost all pseudovirus infections, which indicated the usefulness and 
effectiveness of the protective measures. Taken together, both the spike 
protein and the pseudovirus experiment demonstrated the potential of 
this Lung-MPSs for the study of infection by airborne pathogens. 

Fig. 2. Introduction of Immune Cells in the Lung-MPS to Simulate Early Inflammation. A) Seeding of macrophages on an epithelial layer. i) Schematic drawing, ii), 
H&E staining, iii) SEM imaging, showing the presence of macrophages on lung epithelium. B) Monocytes attached to the endothelium w/or w/o LPS treatment (10 
μg/ml) during perfusion. Endothelial cells were labeled with NucBlue for the nucleus (blue), and monocytes were stained with cell tracker red (red). Scale bar, 200 
μm. C) Frames from a movie showing the rolling and gradual adhesion of monocytes attached to the endothelium in Lung-MPSs pretreated with LPS. Red arrows 
point to preexisting monocytes on the endothelium, and green arrows indicate new monocyte attachment. Scale bar, 20 μm. D) SEM images showing monocyte 
attachment to the endothelium with or without LPS treatment. E) Quantitative comparison of monocyte adhesion on the endothelium in the Lung-MPS w/or w/o LPS 
group. Significance was calculated by one-way ANOVA with Tukey’s post-hoc tests. *p < 0.05, ***p < 0.001. N.S., no significance. 
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3.5. Counting attached leukocytes and epithelial morphological analysis 
using artificial intelligence 

Lung-MPS contains multiple flow chambers, different layers and 
multiple tissues, resulting in a complexity in imaging and a reduction in 

image quality. To better quantify the inflammation-induced changes in 
pulmonary epithelial cells and macrophages, we developed deep- 
learning-based algorithms to classify the status of these epithelial cell 
layers with macrophages attached. We used a model of the VGG-19 
Network (Materials and Methods) trained by an existing training set to 

Fig. 3. Measurement of Inflammatory Reactions in the Lung-MPS. A) Inflammatory material cytokine secretion in the Lung-MPSs under different conditions. (I) TNF- 
α, (II) MCP-1, and (III) IL-6 (pg/ml). B) (I) TEER value measured in Lung-MPS bronchial and alveolar chambers, (II) permeability measured in Lung-MPSs showing 
the transfer of small fluorescence molecules from upper chamber to lower chamber against time, (III) the calculated permeability in bronchial and alveolar chamber 
under different conditions, where w/o M LPS means treatment without macrophages but with LPS. Data were compared with 6 samples in each group from three 
experiments. Significance was calculated by one-way ANOVA with Tukey’s post-hoc tests. *p < 0.05, ***p < 0.001. N.S., no significance. 

Fig. 4. Integrated Lung-MPSs for Spreading of Virus Particles. A) Illustrations and photographs of an integrated Lung-MPS system for a simulation of the droplet 
spreading between human lungs: Upper panel, timeline of the operation of the spreading system, Lower panel, diagram showing the components of the system. B) 
Photos of Lung-MPS, including: two control systems, upstream chips and pump systems, nebulizer, “mask”, upstream and downstream reservoirs, downstream chips 
and pump systems. 
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predict whether it is the normal (unstimulated) epithelium (Fig. 6A, left 
panel). A VGG network model used by the system is shown in Fig. 6A, 
(right panel). In brief, this network takes the preprocessed image with a 
size of 224 × 224 as input and outputs the predicted label (control and 
stimulation groups). The first two convolution groups have 2 convolu-
tion layers with 64 and 128 feature maps. The remaining three convo-
lution groups contain 4 convolution layers with feature maps of 256, 
512, and 512. The first two fully connected layers have 4096 channels 
each, and the third performs 2-way experimental condition classifica-
tion and thus contains 2 channels (one for each class). The output was 
two states that represent the control (w/o stimulation) condition or the 
abnormal (w/stimulation) condition, as demonstrated in Fig. 6B. Both 
fluorescence and bright field images were tested, and the image with the 
best result was used. The accuracy of the model continuously improved 
as the number of training sessions increased (Fig. 6C). After 90 training 
epochs, its accuracy rapidly increased to above 0.9 (compared to ground 
truth), indicating its accuracy>90%. 

We also applied an integrated learning method to increase the per-
formance of our model. Considering that a real sample consists of four 
cell type (macrophages, epithelium, monocyte, endothelium) images, a 
2-branch-VGG or 4-branch-VGG network was proposed that takes all 
four kinds of images as input and predicts the label of the sample by 
comprehensive analysis. The architecture of our network is shown in 

Fig. 3D. Each input image is first sent into a pretrained VGG19 feature 
extractor for deep feature extraction, and then the features of the four 
branches are concatenated for feature fusion. Finally, three fully con-
nected layers are applied as the classifier. The 4-branch VGG network 
outputs two statuses representing two conditions. Because of the inte-
grated learning strategy, the accuracy and loss curves of the model 
converge quickly (Fig. 6C). After 30 epochs (Materials and Methods), the 
accuracy of the training set reaches 99.8%, and the result on the test set 
is 97.9%, which increases considerably compared with the result of the 
previous VGG-19 network. 

To test the capacity of our system, we applied stimulation in the 1st 
(upstream) and spread to 2nd (downstream) chips in MPS with or 
without masks (Fig. 6D). Three conditions were tested: control (PBS), 
LPS, pseudovirions, and the images in both bronchial and alveolar 
chambers where taken. The 4-branch VGG network deep-learning al-
gorithms predicted the number of stimulated bronchial and alveolar 
tissues in the Lung-MPS, and the results are shown in Fig. 6E. Experi-
ments were performed in six independent tests each time with four chips 
in each group. We found that LPS (10 μg/mL) can successfully activate 
both upstream and downstream Lung-MPSs while having a significantly 
reduced effect to mask protected Lung-MPSs, while masking completely 
protected the system from the virus infection considered. The Lung-MPS 
system in the LPS-mask protected group could not detect notable 

Fig. 5. Characterize the Spreading of Spike-Protein and Pseudo-Virus Particles in L-MPS. A) Food colorants and fluorescent microbeads were used to demonstrate the 
diffusion of small molecules or substances from the upstream cascade to the downstream cascade. The medium from the first Lung-MPS was nebulized and spread to 
the downstream Lung-MPS, with or without protection by pieces from surgery face masks. The right panel shows the spreading efficiency w/o and with masks. B) 
Fluorescence measurement of the spike protein and ACE2 colocalization. The spreading of the spike proteins was significantly attenuated by piece of masks measured 
by the fluorescence intensity decreased over 99% percent compared with the unmasked group. C) Pseudovirus in Lung-MPS. Live cell images were obtained at 12 h 
after infection. Cells with fluorescence signals above the threshold were obtained and counted automatically. In the first Lung-MPS, an average of 74 cells per 
microscopic view were found to be infected with GFP-labeled pseudovirions; in the second Lung-MPS, an average of 6 cells per view were recorded, while in the 
mask-blocked group, an average of less than one cells per view were recorded. Data were compared with 15–20 samples in each group from three experiments. 
Significance was calculated by one-way ANOVA with Tukey’s post-hoc tests. *p < 0.05, ***p < 0.001. N.S., no significance. 
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Fig. 6. Deep-Learning Based Algorism for Lung-MPS Activation Identification.A) Schematic illustration of the execution steps of the deep learning algorithm and the 
architecture of the VGG19 model used in this research. The VGG-19 network is composed of 5 convolution groups and 3 fully connected layers. All the convolution 
layers use a convolution kernel of 3 × 3, and there is a max-pooling layer at the end of each group. This network takes the preprocessed image with a size of 224 ×
224 as input and outputs the predicted label (experimental group and control group). B) Examples of images of the macrophages, epithelium, endothelium and 
leukocyte inside of the L-MPS w/or w/o LPS treatment. C) Accuracy of prediction of Lung-MPS stimulation status as a function of rounds of training, evaluated by the 
F value. The accuracy increased when both layer (Epithelium + Macrophage + Endothelium + Monocytes) images were all analyzed together compared with the 
analysis of the front layer (Epithelium and Macrophages) only. D) The stimulation status was analyzed for both the 1st (upstream) and 2nd (downstream) chips in 
MPS, with or without masks. E) The Deep-Learning predicted the number of stimulated bronchial and alveolar tissues in Lung-MPSs with different treatments 
(Control, LPS, Pseudovirions) are shown in the diagram. Experiments were performed with four chips in each group in six independent tests. 
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inflammatory activation (by ELISA, or by experts, data not shown) but 
could be picked up by the deep-learning system, indicating the high 
sensitivity of the algorithm. 

4. Discussion 

Earlier lung OOC models have been applied for detecting bacteria, 
chemicals, and nanoparticles (Huh et al. 2010, 2012a). In this study, an 
MPS, with alveolar-and-pulmonary bronchus components and incorpo-
rating resident macrophages and patrolling monocytes was developed 
and applied to model the inflammatory cascade reaction and pseudo-
virus infection and spread. Because the MPS has independent alveolar 
and bronchial chambers, the permeability of the bronchi and alveoli and 
the release of mucus can be monitored independently. Some publica-
tions have introduced neutrophils into a lung-on-a-chip to investigate 
the immune reactions of diseases since lung inflammation is mediated at 
the organ-level(Benam et al., 2016; Nawroth et al., 2020). Based on 
these achivements and considering that monocyte/macrophage- 
mediated inflammatory storms play an important role in COVID-19 
lung disease(Desterke et al., 2020), we constructed the MPS with mac-
rophages and monocytes to observe inflammatory signals at the 
organ-level in vitro, and it truly exhibited enhanced inflammatory storm 
responses. Moreover, we fabricated the connected lung-MPSs and the 
liquid-atomization operating between the different groups of Lung-MPS. 
In the system, fluid perfusion, sampling and control of the chip are 
completely automated, and the on-off and flow rates of the fluid can be 
defined and regulated through user friendly software. The configuration 
of this integrated system permits the study of the spread of viruses and a 
comparison of the effects of various protective measures in a safe and 
automated way. 

Our macrophage-containing Lung-MPS system is more sensitive for 
monitoring an inflammatory reaction. The ratio of macrophages to 
alveolar cells in the alveoli is generally approximately 1: 10 (Fig. 2). 
These resident macrophages act as sentinels in the immune system 
responding to bacteria, chemicals, dust, and other harmful agents 
(through PAMPs), or cell death (DAMPs). Because many OOCs or MPSs 
reported previously often lack this key component, they are deficient in 
generating the initial, but most effective, inflammatory signals. Thus, 
our Lung-MPS detects the existence of DAMPs or PAMPs produced by 
activated macrophages and virus particles (Figs. 2, 3 and 6) instead of 
relying on the inflammatory reaction generated entirely by epithelia or 
endothelia. 

Furthermore, we demonstrated that the monocytes patrolling this 
MPS can lead to significantly elevated inflammatory signals. Initial in-
flammatory signals released by macrophages activate nearby endothe-
lial cells, resulting in the expression of adhesion factors, such as I-CAM-1 
and E-selectin, on endothelial cell surfaces(Libby and Luscher, 2020). 
Consequently, circulating monocytes introduced into our system may 
adhere, roll, and transmigrate through the endothelial layer. These 
accumulated monocytes generate inflammatory cytokines, resulting in 
local inflammation enhancement and leading to an increase in inflam-
matory signals (Figs. 2 and 3). These inflammatory cytokines could be 
responsible for the cytokine storm following SARS or COVID-19 infec-
tion; similar storms have been recapitulated in previous influenza in vitro 
model but without immune cells(Si et al., 2021b). 

We demonstrated that the spike protein of SARS-CoV-2 can attach to 
the epithelium in our Lung-MPS, and the pseudovirus can infect the 
epithelium of Lung-MPS indicating that this system could be used for the 
study of infection by airborne pathogens that are contained in fluid 
droplets. Compared with a cell culture model, this model provides a 
more faithful representation of the biological situation in terms of cell- 
cell signaling and cell-matrix interactions and tissue functionality. 
Compared with an animal model, our model is composed of human cells 
and thus is better suited to study how disease spreads between people. 
The droplet spreading system we fabricated can be used for quantita-
tively studying viral infection in the lung-MPS and the effect of physical 

protective equipment (such as face masks) on the spread of the virus. 
This system also has potential applications in the study of viral spread 
among humans or from animals to humans or from humans to animals. 

According to a previous study, there is a growing need to automate 
many biological in vitro experiments for improved accuracy, increased 
throughput, and reduced risk to researchers when working with path-
ogens or other laboratory hazards(Novak et al., 2020). Therefore, we 
constructed deep-learning based algorithms for analysis, which had an 
accuracy of above 93% (w/two images), and above 99% (w/four im-
ages) to evaluate the influence of viruses on the epithelia, macrophages, 
endothelia, and monocytes by imaging. As the complexity in the 
Lung-MPS structure reduced the imaging quality of each tissue, the 
morphological changes of each cell were not significant, even as judged 
by professional biologists. However, with the deep-learning algorithms, 
the program could distinguish the distinct differences in the images from 
control and stimulated Lung-MPS performing this classification task 
better than trained humans and with improved safety – everything was 
on chip and could be monitored remotely and fully automated. 

5. Conclusion 

In summary, we have developed a multichamber, multicell- 
component human Lung-MPS to monitor viral infection. For the first 
time, to our knowledge, we introduced resident macrophages and 
circulating monocytes in the system to simulate and study the inflam-
matory cascade in the lung. Using our MPS, changes in lung functions, 
such as the permeability of the Lung-MPS, mucus secretion, and 
inflammation, can be monitored in real time. We also developed deep- 
learning algorithms that can be applied in this Lung-MPS research to 
distinguish the morphological changes of epithelium, macrophages, and 
endothelium in Lung-MPS. Last, by introducing the SARS-CoV-2 spike 
protein and a SARS-CoV-2 pseudovirus, we demonstrated that this Lung- 
MPS could be employed to model pathological changes seen in COVID- 
19 patients and could also be useful for evaluating and screening drugs 
to ameliorate viral disease. 
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